Laurea in Biotecnologie

Academic program

Print guide
Print
Year Course ID Course Teachers SSD Curriculum Site CFU
1 MS0440 Biomolecules and Introductory Laboratory APPENDINO Giovanni Battista, NEGRI Roberto, CAPRIOGLIO Diego, CAPELLO Daniela, MINASSI Alberto CHIM/06, BIO/10 All NOVARA 13
1 BT001 CELL BIOLOGY PERSICHETTI Francesca, COTELLA Diego, CORAZZARI Marco BIO/13, BIO/18 All NOVARA 10
1 MC004 English Language BRADY Bernadette Catherine, ELLIS Jimi, CAREW Heather Alice L-LIN/12 All NOVARA 5
1 MS0439 Fundamentals of Mathematics, Physics RINALDI Maurizio, PANZIERI Daniele, RUSPA Marta, SITTA Mario, FERRERO Alberto FIS/01, MAT/04 All NOVARA 8
1 BT006 GENERAL CHEMISTRY ANASTASIA Mario, BOCCALERI Enrico, GABANO Elisabetta CHIM/03 All NOVARA 5
1 BT014 HUMAN MORPHOLOGY AND MORPHOGENESIS PRAT Maria Giovanna, BOCCAFOSCHI Francesca, CREMONA Ottavio, FOLLENZI Antonia BIO/16, BIO/17 All NOVARA 10
2 BT068 Functional biochemistry with elements of laboratory CAPELLO Daniela, BALDANZI Gianluca BIO/10 All 11
2 BT027 Fundamentals of immunology and medical microbiology AZZIMONTI Barbara, DIANZANI Umberto MED/04, MED/07 All 10
2 MS0443 Genetics GIORDANO Mara MED/03 All 6
2 BT035 Human physiology GROSSINI Elena BIO/09 All 5
2 BT031 Laboratory cell cultures MERLIN Simone, BOLDORINI Renzo Luciano MED/08, BIO/17 All 6
2 BT022 Molecular Biology SANTORO Claudio Ventura, PELICCI Giuliana BIO/11, BIO/13 All 11
3 MS0371 Biotechnological applications in the clinical laboratory ROLLA Roberta, DI RUSCIO Annalisa MED/15, MED/05 All NOVARA 10
3 MS0450 Clinical Biochemistry and Clinical Molecular Biology CAPELLO Daniela BIO/12 All NOVARA 5
3 BT063 Dissertation Thesis PROFIN_S All NOVARA 10
3 MC117 Elective Didactic Activities NN All NOVARA 12
3 MS0448 Epidemiology BARONE ADESI Francesco MED/42 All NOVARA 5
3 MS0120 Further Learning Activities NN All NOVARA 2
3 MS0447 General Pathology CARINI Rita MED/04 All NOVARA 6
3 MS0449 Pharmaceutical Chemistry PIRALI Tracey CHIM/08 All NOVARA 5
3 MS0432 Pharmacology and Innovation management FRESU Luigia Grazia, CONICELLA Fabrizio, JOMMI Claudio SECS-P/08, BIO/14, SECS-P/07 All NOVARA 12
3 MS0446 Statistical methods for experimental studies MAGNANI Corrado MED/01 All NOVARA 5
3 MS0146 Training NN All NOVARA 8
Print
CourseBiomolecules and Introductory Laboratory
Course IDMS0440
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderAPPENDINO Giovanni Battista
TeachersAPPENDINO Giovanni Battista, NEGRI Roberto, CAPRIOGLIO Diego, CAPELLO Daniela, MINASSI Alberto
CFU13
Course typeAttività formativa integrata
Course mandatorietyMandatory course
Year1
PeriodAnnuale
SiteNOVARA
Grading typeFinal grade
Modules
Course ID Course SSD Teachers
MS0430 Organic Chemistry CHIM/06 - Organic chemistry APPENDINO Giovanni Battista, NEGRI Roberto, CAPRIOGLIO Diego
BT019 Biochemical structural elements of enzymology BIO/10 - Biochemistry CAPELLO Daniela
MS0441 Introductory chemistry laboratory CHIM/06 - Organic chemistry MINASSI Alberto, CAPRIOGLIO Diego
Close course details
Show parent course details
Print
CourseOrganic Chemistry
Course IDMS0430
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderAPPENDINO Giovanni Battista
TeachersAPPENDINO Giovanni Battista, NEGRI Roberto, CAPRIOGLIO Diego
CFU5
Teaching duration (hours)40
Individual study time 85
SSDCHIM/06 - Organic chemistry
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryA - Base
Year1
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Sites and/or partitions
Gruppo A
Gruppo B
Gruppo C
Close course details
Show parent course details
Print
CourseOrganic Chemistry
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderAPPENDINO Giovanni Battista
TeachersAPPENDINO Giovanni Battista
Course typeGruppi
Year1
PartitionGruppo A
Teaching languageItalian
AbstractStructure properites (configurational, conformazional, acid-base) of organic compounds. Functional groups and main reaction types of organic compounds. Non-polymeric biomolecules (carbohydrates, lipids, amino acids).
Reference texts“Chimica di Base per le Scienze della Vita” Ed. Delfino, Roma. Volume II . Autore: M. Anastasia “Chimica Organica” Ed. Edi-Ermes Autore: B. Botta “Chimica Organica”Ed. Zanichelli Autori: K. P. C. Vollhardt – N. E. Shore “Fondamenti di Chimica Organica” Autore: D. Klein
Teaching targetsProvide students the essential elements of organic chemistry to critically approach the study of complex biomolecules.
PrerequisitesMain concepts developed in the course of General Chemistry (chemical bond, equilibria, kinetics and thermodynamics of chemical processes)
Didattics MethodsExercises and problems will be solved and discussed during the course. All the material will be made available to students in the web
Grading rulesThe exam will be a set of multiple-choice questions aimed at developing the attitude to critical thinking of the candidate
Full argumentsCredit 1: carbon and its bonding mode. Functional groups and nomenclature of the main classes of organic compounds (hydrocarbons, compounds wit a single carbon-heteroatom bond (alcohols, ethers, amines, phenols andtheir isosteric modifications). Aromaticity Credit 2: Isomerism (constitutional and configuration); conformational and conformational analysis: stereochemical descriptors (R/S, D/L, d/l, cis/trans; threo/erythor; syn/anti; clinal/periplanar: eclipsed/staggered) Credits 3 and 4: reactive sites (electrophilic and nucleophilic) and major types of organic reactions (substitutions, eliminations, rearrangements) of special relevance in cell metabolism. Credit 5: basic chemistry of nonpolymeric primary metabolits (lipids, carbohydrates, amino acids)
Close course details
Show parent course details
Print
CourseOrganic Chemistry
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderNEGRI Roberto
TeachersNEGRI Roberto
Course typeGruppi
Year1
PartitionGruppo B
Teaching languageItalian
AbstractStructure properites (configurational, conformazional, acid-base) of organic compounds. Functional groups and main reaction types of organic compounds. Non-polymeric biomolecules (carbohydrates, lipids, amino acids).
Reference texts“Chimica di Base per le Scienze della Vita” Ed. Delfino, Roma. Volume II . Autore: M. Anastasia “Chimica Organica” Ed. Edi-Ermes Autore: B. Botta “Chimica Organica”Ed. Zanichelli Autori: K. P. C. Vollhardt – N. E. Shore “Fondamenti di Chimica Organica” Autore: D. Klein
Teaching targetsProvide students the essential elements of organic chemistry to critically approach the study of complex biomolecules.
PrerequisitesMain concepts developed in the course of General Chemistry (chemical bond, equilibria, kinetics and thermodynamics of chemical processes)
Didattics MethodsExercises and problems will be solved and discussed during the course. All the material will be made available to students in the web
Grading rulesThe exam will be a set of multiple-choice questions aimed at developing the attitude to critical thinking of the candidate
Full argumentsCredit 1: carbon and its bonding mode. Functional groups and nomenclature of the main classes of organic compounds (hydrocarbons, compounds wit a single carbon-heteroatom bond (alcohols, ethers, amines, phenols andtheir isosteric modifications). Aromaticity Credit 2: Isomerism (constitutional and configuration); conformational and conformational analysis: stereochemical descriptors (R/S, D/L, d/l, cis/trans; threo/erythor; syn/anti; clinal/periplanar: eclipsed/staggered) Credits 3 and 4: reactive sites (electrophilic and nucleophilic) and major types of organic reactions (substitutions, eliminations, rearrangements) of special relevance in cell metabolism. Credit 5: basic chemistry of nonpolymeric primary metabolits (lipids, carbohydrates, amino acids)
Close course details
Show parent course details
Print
CourseOrganic Chemistry
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCAPRIOGLIO Diego
TeachersCAPRIOGLIO Diego
Course typeGruppi
Year1
PartitionGruppo C
Teaching languageItalian
AbstractStructure properites (configurational, conformazional, acid-base) of organic compounds. Functional groups and main reaction types of organic compounds. Non-polymeric biomolecules (carbohydrates, lipids, amino acids).
Reference texts“Chimica di Base per le Scienze della Vita” Ed. Delfino, Roma. Volume II . Autore: M. Anastasia “Chimica Organica” Ed. Edi-Ermes Autore: B. Botta “Chimica Organica”Ed. Zanichelli Autori: K. P. C. Vollhardt – N. E. Shore “Fondamenti di Chimica Organica” Autore: D. Klein
Teaching targetsProvide students the essential elements of organic chemistry to critically approach the study of complex biomolecules.
PrerequisitesMain concepts developed in the course of General Chemistry (chemical bond, equilibria, kinetics and thermodynamics of chemical processes)
Didattics MethodsExercises and problems will be solved and discussed during the course. All the material will be made available to students in the web
Grading rulesThe exam will be a set of multiple-choice questions aimed at developing the attitude to critical thinking of the candidate
Full argumentsCredit 1: carbon and its bonding mode. Functional groups and nomenclature of the main classes of organic compounds (hydrocarbons, compounds wit a single carbon-heteroatom bond (alcohols, ethers, amines, phenols andtheir isosteric modifications). Aromaticity Credit 2: Isomerism (constitutional and configuration); conformational and conformational analysis: stereochemical descriptors (R/S, D/L, d/l, cis/trans; threo/erythor; syn/anti; clinal/periplanar: eclipsed/staggered) Credits 3 and 4: reactive sites (electrophilic and nucleophilic) and major types of organic reactions (substitutions, eliminations, rearrangements) of special relevance in cell metabolism. Credit 5: basic chemistry of nonpolymeric primary metabolits (lipids, carbohydrates, amino acids)
Close course details
Show parent course details
Print
CourseBiochemical structural elements of enzymology
Course IDBT019
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCAPELLO Daniela
TeachersCAPELLO Daniela
CFU5
Teaching duration (hours)40
Individual study time 85
SSDBIO/10 - Biochemistry
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year1
PeriodSecondo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageItaliano
Abstract- I legami chimici e le interazioni fra molecole nella chimica della vita - Struttura, classificazione e funzione delle macromolecole biologiche. Glicidi semplici e complessi, monosaccaridi modificati, omo ed eteropolisaccaridi. Lipidi e struttura delle membrane biologiche. Il colesterolo ed i suoi derivati. Gli acidi nucleici e meccanismi generali della trasmissione dell’informazione. Gli amminoacidi e le proteine. I glicoconiugati - Strutture e folding delle proteine - Enzimi e cinetica enzimatica - Modificazioni co e post-traduzionali delle proteine e segnali per la localizzazione. I processi di indirizzamento cellulare - Proteine di trasporto extracellulare, proteine che legano l’O2: le globine - Unità strutturale contrattile: organizzazione morfologica e molecolare della fibra muscolare, delle miofibrille e del sarcomero. - Proteine del citoscheletro - Proteine della matrice extracellulare: laminine, fibronectina, collageni, elastina. - Trasporto di molecole: biochimica del traffico vescicolare - Trasporto di molecole attraverso le membrane: trasportatori e canali. - Trasmissione di segnali regolatori dall’esterno all’interno della cellula: meccanismi fondamentali della trasduzione del sagnale. Le principali vie di segnalazione negli organismi pluricellulari
Reference textsPrincipi di biochimica di Lehninger di Lehninger - Nelson - Cox • 2014; VI edizione, Zanichelli Introduzione allo studio delle proteine. Duranti; Zanichelli
Teaching targetsCreare nello studente le basi per un approccio molecolare alla fisiologia ed alla patologia, tramite la definizione del rapporto struttura-funzione delle macromolecole biologiche, con particolare attenzione alle proteine dotate di attività enzimatica, alle proteine trasportatrici ed a quelle implicate nella trasduzione del segnale. Al termine del corso lo studente dovrà essere in grado di descrivere, in termini molecolari, la struttura della materia biologica, sapendo riconoscere il ruolo della struttura sulla funzionalità delle macromolecole stesse. Dovrà inoltre mostrare padronanza dei principali meccanismi di azione degli enzimi e dei tipi di reazione da essi catalizzate e conseguire un’adeguata conoscenza dei meccanismi di trasduzione del segnale
PrerequisitesConoscenze di base di chimica generale e biologia cellulare
Didattics MethodsProiezione di diapositive durante le lezioni. Per la preparazione dell'esame gli studenti potranno utilizzare il materiale fornito dal docente (copia pdf delle diapositive proiettate a lezione e di dispense che approfondiscono gli argomenti trattati durante il corso) ed i libri di testo consigliati
Grading rulesProva scritta consistente in una serie di 50 domande con risposte a scelta multipla
Full arguments1_ Le macromolecole biologiche - I legami chimici e le interazioni fra molecole nella chimica della vita - Carboidrati. Monosacaccaridi, disaccaridi, legame glicosidico. Omopolisaccaridi di riserva e strutturali. Monosaccaridi modificati. Eteropolisaccaridi: struttura di glicosamminoglicani, chitina, agar, emicellulose, gomme. I glicoconiugati: glipicani, sindecani, proteoglicani, glicoproteine. - Lipidi. Acidi grassi saturi ed insaturi: caratteristiche chimico-fisiche e loro influenza sulla loro funzione biologica. Classificazione, struttura e funzione di: gliceridi neutri e le cere, i glicerofosfolipidi., plasmalogeni, sfingolipidi, glicolipidi. Principi di organizzazione delle membrane biologiche: le molecole antipatiche, formazione di vescicole, micelle, doppi strati. Struttura del colesterolo e suoi derivati. - Acidi nucleici. Le basi azotate, i nucleosidi, i nucleotidi. Il legame fosfodiestere, struttura primaria e secondaria degli acidi nucleici. La denaturazione del DNA e duplicazione dell’informazione. Organizzazione superiore del DNA, la cromatina: cenni sulla struttura e funzione. La struttura secondaria e terziaria dell’RNA. Classificazione dei diversi tipi di RNA. Caratterizzazione del gene come unità funzionale per la trasmissione dell’informazione. - Dagli amminoacidi alle proteine. Amminoacidi: struttura, stereoisomeria e chiralità. Modificazioni reversibili degli amminoacidi coinvolte nella regolazione delle proteine. Proprietà anfoioniche degli aa. Punto isoelettrico. Le proteine. Legame peptidico: proprietà chimico fisiche. Cenni sulle molecole derivate degli amminoacidi ad attività biologica. La direzionalità della sequenza aminoacidica; cenni sulla conversione del codice genetico in sequenza aminoacidica (traduzione di mRNA). Strutture secondarie, struttura terziaria. Legami a ponte disolfuro. Strutture supersecondarie, motivi strutturali e domini funzionali. Struttura terziaria. Il folding. Struttura quaternaria: proteine fibrose e proteine globulari. Metodi immunoenzimatici per lo studio della struttura delle proteine: immunoblot/Western Blot, Enzyme Linked Immuno Sorbent Assay (ELISA). 2_Gli enzimi e cinetica enzimatica - Le leggi della termodinamica nelle reazioni biologiche. Energia di attivazione suo impatto sulla velocità di reazione. Costante di velocità. Enzimi, coenzimi, gruppi prostetici, co-substrati: meccanismi generali d’azione. Classificazione degli enzimi. Principali meccanismi di catalisi. Cinetica enzimatica. Ipotesi dello stato stazionario, equazione di Michaelis-Menten. Parametri cinetici fondamentali: numero di turnover, costante di specificità, significato e metodo di calcolo. Inibizione competitiva, mista e incompetitiva: aspetti cinetici. Meccanismi di generali di regolazione degli enzimi: covalenti e non covalenti; allosteria. Regolazione mediante proteolisi: serin-proteasi, cistein-proteasi, aspartil-proteasi, metalloproteasi 3_ Rapporto struttura-localizzazione-funzione delle macromolecole biologiche - Organizzazione delle membrane cellulari e subcellulari; movimengo di lipidi attraverso il doppio strato: floppasi, scramblasi, flippasi. Il modello a mosaico fluido. I “lipid rafts”/zattere lipidiche. - Modificazioni co e post-traduzionali delle proteine e segnali per la localizzazione. Segnali d’ingresso e ritenzione negli organelli o di indirizzamento alla membrana plasmatica. - Proteine che legano l’O2: le globine; struttura del gruppo EME. Struttura e funzione di mioglobina: ed emoglobina. Curva di saturazione. Allosteria T/R, cooperativita’. Equazione e coefficiente di Hill. Regolazione dell’affinità di Hb per il suo ligando da parte di: O2, CO2, H+ e loro ruolo negli scambi gassosi a livello polmonare e tissutale. Ruolo di 2,3 bisfosfoglicerato (BPG) nella regolazione della affinita’di Hb per O2. Basi molecolari delle talassemie, emoglobinopatie e meteglobinemie - Proteine con funzione di riconoscimento e difesa: le immunoglobuline: classificazione generale, struttura e meccanismi di interazione con l’antigene. Cenni sul riarrangiamento genico che genera le regioni variabili delle catene pesanti e leggere. - Unità strutturale contrattile: organizzazione morfologica e molecolare della fibra muscolare, delle miofibrille e del sarcomero. Meccanismo biochimico della contrazione: regolazione dell’attività del complesso acto-miosinico, ruolo di ATP e degli ioni calcio - Proteine del citoscheletro. Meccanismo di polimerizzazione di actina, proteine che legano l’actina e regolano la sua polimerizzazione. Microtubuli: struttura, meccanismo di polimerizzazione e ruolo intracellulare. Motori molecolari: chinesine e dineine. Struttura e meccanismo di avanzamento ATP-dipendente sul microtubulo. I filamenti intermedi: caratteristiche funzionali e meccanismo di polimerizzazione. Proteine della matrice extracellulare: laminine, fibronectina, collageni, elastina. - Trasporto di molecole attraverso le membrane: biochimica del traffico vescicolare. Cenni sui meccanismi generali di endocitosi. Meccanismi di curvatura e scissione delle membrane. Endocitosi mediata da recettori clatrina e non clatrina dipendenti - Trasporto di molecole attraverso le membrane: trasportatori e canali. Meccanismi generali di trasporto attraverso le membrane. Trasporto non mediato; trasportatori e canali, il trasporto facilitato, ed il trasporto attivo. Le pompe ioniche. Sistemi di co-trasporto e antiporto. I trasportatori ABC. Membrane eccitabili, potenziali d’azione e neurotrasmissione. Canali voltaggio-dipendenti. Canali ionici controllati da ligandi: il recettore canale per acetilcolina; meccanismi di desensitizzazione dei canali. 4_ Trasduzione di segnali regolatori dall’esterno all’interno della cellula - Principi generali di interazione di molecole segnale (ligandi) con i loro specifici recettori. Classificazione dei tipi di segnalazione. Proteine del segnale e secondi messaggeri. Formazione di complessi di segnalazione. Caratteristiche del processo di legame e dei meccanismi di spegnimento del segnale - Recettori di adesione cellula-cellula e cellula-matrice. Struttura e funzione delle molecole di adesione (“Cell Adhesion Molecules”, CAM) IgSF CAM, selectine e caderine. Funzione delle caderine nei complessi di giunzione cellula-cellula e ruolo della beta catenina nella segnalazione. Le integrine: interazione con la matrice extra cellulare nella formazione delle adesioni focali e degli emidesmosomi - I recettori accoppiati a proteine G (GPCR): struttura e meccanismo d’azione dei GPCR e delle proteine G eterotrimeriche: accoppiamento proteina G/effettori; meccanismo molecolare della desensitizzazione recettoriale. Sistemi effettori di proteine G eterotrimeriche produttori di secondi messaggeri intracellulari: adenilato ciclasi, AMPciclico (cAMP), Proteina Chinasi A (PKA). Le fosfodiesterasi. Le fosfolipasi C: diacilglicerolo (DAG) e Inositolo trisfosfato (IP3). Meccanismi di segnalazione Ca2+-dipendenti. - Recettori tirosina chinasi (TKR): assetto strutturale e meccanismo generale di segnalazione. Ruolo dell’interazione domini SH2/fosfotirosine nel reclutamento e attivazione dei pathways di trasduzione del segnale. Segnalazione a valle dei recettori TKR: vie delle small G-proteins (Ras e membri della superfamiglia Ras), di MAP-chinasi e di fofatidilinositolo 3 chinasi (PI-3K). Ruolo di PKB/Akt nella segnalazione PI-3K-dipendente - Proteine tirosina-chinasi solubili. La famiglia di SRC, struttura e meccanismo di regolazione della proteina SRC - Recettori associati a tirosina chinasi: classificazione generale dei recettori per citochine e ormoni glicoproteici, la via di JAK/STAT - Serina e treonina chinasi recettoriali: la famiglia del recettore TGF-β - Recettori con attività guanilato ciclasica; guanilato ciclasi solubili NO-dipendenti. NO-sintetasi. Funzioni di cGMP. Azioni biologiche di NO mediate da cGMP. Inibizione delle vie cGMP-dipendenti - Recettori intracellulari: meccanismi generali di azione
Close course details
Show parent course details
Print
CourseIntroductory chemistry laboratory
Course IDMS0441
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderMINASSI Alberto
TeachersMINASSI Alberto, CAPRIOGLIO Diego
CFU3
Teaching duration (hours)16
Individual study time 47
SSDCHIM/06 - Organic chemistry
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryC - Affine o integrativo
Year1
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Sites and/or partitions
Gruppo A
Gruppo B
Gruppo C
Close course details
Show parent course details
Print
CourseIntroductory chemistry laboratory
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderMINASSI Alberto
TeachersMINASSI Alberto
Course typeGruppi
Year1
PartitionGruppo A
Teaching languageItalian
Abstract• Molarity • Normality • Molality •% w / w, w / v, v / v • pH and factors that influence the pH • Buffer solution • Quantitative analysis exercises • Volumetric analysis (titration)
Reference textsFondamenti di Stechiometria Giomini, Balestrieri, Giustino, edises
Teaching targetsthe course has the objective to provide the basic knowledge for calculating the concentrations of the solutions in the various forms that are commonly used in the laboratory whether chemical and pharmacological. At the end of the course students should be able to apply theoretical formulas to practical problems of dilution and preparation of solutions of known titre.
Prerequisitesprerequisites: general chemistry
Didattics Methodsclassroom lectures with computer support: projection of powerpoint slides. The slides are present on the site in advance of the start of the courses. brief presentation of the practical part in order to introduce students to what will be the experiences that they will be addressed in the laboratory and what are the main instruments that they will use exercises to test the learning means inconceivable of the basic formulas for the calculation of the concentrations of solutions In the didactic laboratories the students will do experiments to test their ability of the application of the concepts acquired during the first part of the course. every experience has a dedicated tutor who will follow and support the students in the performance of their work
Grading ruleswritten examination with problems on the preparation of standard solutions of various salts and inorganic compounds and the determination of the concentration of solutions of unknown titre
Full argumentsintroduction to solutions, suspensions, emulsions, and their differences. Introduction to the various chemical and physical units for the calculation of concentrations of solutions. exercises done in the classroom for learning evaluation. volumetric methods: theoretical and practical concepts of the use of titrations.
Close course details
Show parent course details
Print
CourseIntroductory chemistry laboratory
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderMINASSI Alberto
TeachersMINASSI Alberto
Course typeGruppi
Year1
PartitionGruppo B
Teaching languageItalian
Abstract• Molarity • Normality • Molality •% w / w, w / v, v / v • pH and factors that influence the pH • Buffer solution • Quantitative analysis exercises • Volumetric analysis (titration)
Reference textsFondamenti di Stechiometria Giomini, Balestrieri, Giustino, edises
Teaching targetsthe course has the objective to provide the basic knowledge for calculating the concentrations of the solutions in the various forms that are commonly used in the laboratory whether chemical and pharmacological. At the end of the course students should be able to apply theoretical formulas to practical problems of dilution and preparation of solutions of known titre.
Prerequisitesprerequisites: general chemistry
Didattics Methodsclassroom lectures with computer support: projection of powerpoint slides. The slides are present on the site in advance of the start of the courses. brief presentation of the practical part in order to introduce students to what will be the experiences that they will be addressed in the laboratory and what are the main instruments that they will use exercises to test the learning means inconceivable of the basic formulas for the calculation of the concentrations of solutions In the didactic laboratories the students will do experiments to test their ability of the application of the concepts acquired during the first part of the course. every experience has a dedicated tutor who will follow and support the students in the performance of their work
Grading ruleswritten examination with problems on the preparation of standard solutions of various salts and inorganic compounds and the determination of the concentration of solutions of unknown titre
Full argumentsintroduction to solutions, suspensions, emulsions, and their differences. Introduction to the various chemical and physical units for the calculation of concentrations of solutions. exercises done in the classroom for learning evaluation. volumetric methods: theoretical and practical concepts of the use of titrations.
Close course details
Show parent course details
Print
CourseIntroductory chemistry laboratory
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCAPRIOGLIO Diego
TeachersCAPRIOGLIO Diego
Course typeGruppi
Year1
PartitionGruppo C
Teaching languageItalian
Abstract• Molarity • Normality • Molality •% w / w, w / v, v / v • pH and factors that influence the pH • Buffer solution • Quantitative analysis exercises • Volumetric analysis (titration)
Reference textsFondamenti di Stechiometria Giomini, Balestrieri, Giustino, edises
Teaching targetsthe course has the objective to provide the basic knowledge for calculating the concentrations of the solutions in the various forms that are commonly used in the laboratory whether chemical and pharmacological. At the end of the course students should be able to apply theoretical formulas to practical problems of dilution and preparation of solutions of known titre.
Prerequisitesprerequisites: general chemistry
Didattics Methodsclassroom lectures with computer support: projection of powerpoint slides. The slides are present on the site in advance of the start of the courses. brief presentation of the practical part in order to introduce students to what will be the experiences that they will be addressed in the laboratory and what are the main instruments that they will use exercises to test the learning means inconceivable of the basic formulas for the calculation of the concentrations of solutions In the didactic laboratories the students will do experiments to test their ability of the application of the concepts acquired during the first part of the course. every experience has a dedicated tutor who will follow and support the students in the performance of their work
Grading ruleswritten examination with problems on the preparation of standard solutions of various salts and inorganic compounds and the determination of the concentration of solutions of unknown titre
Full argumentsintroduction to solutions, suspensions, emulsions, and their differences. Introduction to the various chemical and physical units for the calculation of concentrations of solutions. exercises done in the classroom for learning evaluation. volumetric methods: theoretical and practical concepts of the use of titrations.
Close course details
Print
CourseCELL BIOLOGY
Course IDBT001
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderPERSICHETTI Francesca
TeachersCOTELLA Diego, CORAZZARI Marco, PERSICHETTI Francesca
CFU10
Course typeAttività formativa integrata
Course mandatorietyMandatory course
Year1
PeriodSecondo Semestre
SiteNOVARA
Grading typeFinal grade
Modules
Course ID Course SSD Teachers
MS0002 Eukaryotic cell biology BIO/13 - Experimental biology COTELLA Diego, CORAZZARI Marco
MS0442 Genetics of microorganisms and eukaryotic BIO/18 - Genetics PERSICHETTI Francesca, CORAZZARI Marco
Close course details
Show parent course details
Print
CourseEukaryotic cell biology
Course IDMS0002
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
TeachersCOTELLA Diego, CORAZZARI Marco
CFU5
Teaching duration (hours)40
Individual study time 85
SSDBIO/13 - Experimental biology
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year1
PeriodSecondo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Sites and/or partitions
Gruppo A
Gruppo B
Gruppo C
Close course details
Show parent course details
Print
CourseEukaryotic cell biology
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCOTELLA Diego
TeachersCOTELLA Diego
Course typeGruppi
Year1
PartitionGruppo A
Teaching languageItalian
AbstractThis course deals with the biology of the eukaryotic cell: structure, function and biosynthesis of cell membranes and organelles; the cytoskeleton and the extracellular matrix. Chromatin structure, the synthesis of RNA and protein and gene flow of information.
Reference textsAlberts, Bray, Hopkin, Johnson, Lewis et al BIOLOGIA MOLECOLARE DELLA CELLULA (l'essenziale) ed. Zanichelli Karp BIOLOGIA CELLULARE E MOLECOLARE ed. EDISES Cooper, Hausman LA CELLULA - un approccio molecolare ed. Piccin Ginelli, Malcovati Molecole, Cellule e Organismi. ed. EdiSES
Teaching targetsThe module will provide students with the basic knowledge on the structure, organization and function of the eukaryotic cell. Particular attention will be given to the understanding of the molecular mechanisms that regulate cell behavior and their biotechnological application. The module will also address the cellular and post-genomic methods that have enabled it to acquire detailed information on cell function.
PrerequisitesThe student must be in possession of biology and genetics concepts, such as those offered at the high school.
Didattics MethodsPresentations in MS-Powerpoint format.
Other informationsVideo projector and computers with Internet connection supplied to the classroom
Grading rulesThe exam consists of a written test with multiple choice questions.
Full argumentsStructure and organization of the cell • Definition life • The eukaryotic cell and prokaryotic cell • The cellular compartments. • The lipids as constituents of chemical barriers Biological membranes • The lipids of biological membranes: phospholipids, glycolipids and cholesterol • The organization dual layer or in micelle • The fluidity of the phospholipid bilayer: the role of unsaturated fats • The intrinsic and extrinsic proteins • The theory of fluid Mosaic The transport mechanisms through membranes • the lipid bilayer permeability • simple and facilitated diffusion • Passive transport and active transport • channel proteins and carrier proteins: kinetic properties of the two systems and operating methods • Glucose Transporter • Pump Na + / K + ATPase: operating mode • Antiport and Simport • ligand-activated channels and channels activated by voltage • The membrane potential and the action potential Mitochondria and ATP synthesis • General knowledge on the process of glycolysis, oxidation of pyruvate, Krebs cycle and the electron transport chain • The structure of the mitochondrion • The mitochondrial genome • The evolutionary origin of mitochondria • The transport of proteins in mitochondria The endoplasmic reticulum and Golgi apparatus • Summary of the membrane proteins and secretion • Glycosylation and maturation of proteins in the Golgi • vesicular traffic: vesicle formation, vesicle movement, recognition of the target organelle • Exocytosis addressing mechanisms of proteins in cellular compartments • signal sequences and protein localization (entry into the nucleus, the endoplasmic reticulum, the mitochondria) endocytosis • pinocytosis, phagocytosis and receptor-mediated endocytosis Degradation of biological macromolecules in the cell • The lysosome • The proteasome The peroxisomes the cytoskeleton • Microfilaments contractile actin and myosin and cell movement • intermediate filaments • Microtubules and organelle movement • Muscle contraction The extracellular matrix • The collagen, laminin the fibronectin, proteoglycans • The extracellular matrix proteins establish multiple interactions • The matrix-cell interaction is mediated by specific receptors: the integrins • Structure and function of integrins and cadherins The cell cycle and mitosis • The cell cycle G1, S, G2, and M. • The role of cyclins and cdk in cell cycle progression • The check point of cell cycle checkpoint in G1 (Rb / E2F), G2 (p53) and mitotic checkpoint (Cdc20 / APC). Cell death and apoptosis • necrosis • Apoptosis: the intrinsic pathway (p53 and mitochondria) and extrinsic (the death receptor) Gene flow of information: the definition of gene era ENCODE • DNA replication and maintenance of network integrity • DNA Transcription: synthesis of RNA and their maturation • Influence of environment on gene flow: Epigenetics • The RNA interference
Close course details
Show parent course details
Print
CourseEukaryotic cell biology
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCOTELLA Diego
TeachersCOTELLA Diego
Course typeGruppi
Year1
PartitionGruppo B
Teaching languageItalian
AbstractThis course deals with the biology of the eukaryotic cell: structure, function and biosynthesis of cell membranes and organelles; the cytoskeleton and the extracellular matrix. Chromatin structure, the synthesis of RNA and protein and gene flow of information.
Reference textsAlberts, Bray, Hopkin, Johnson, Lewis et al BIOLOGIA MOLECOLARE DELLA CELLULA (l'essenziale) ed. Zanichelli Karp BIOLOGIA CELLULARE E MOLECOLARE ed. EDISES Cooper, Hausman LA CELLULA - un approccio molecolare ed. Piccin Ginelli, Malcovati Molecole, Cellule e Organismi. ed. EdiSES
Teaching targetsThe module will provide students with the basic knowledge on the structure, organization and function of the eukaryotic cell. Particular attention will be given to the understanding of the molecular mechanisms that regulate cell behavior and their biotechnological application. The module will also address the cellular and post-genomic methods that have enabled it to acquire detailed information on cell function.
PrerequisitesThe student must be in possession of biology and genetics concepts, such as those offered at the high school.
Didattics MethodsPresentations in MS-Powerpoint format.
Other informationsVideo projector and computers with Internet connection supplied to the classroom
Grading rulesThe exam consists of a written test with multiple choice questions.
Full argumentsStructure and organization of the cell • Definition life • The eukaryotic cell and prokaryotic cell • The cellular compartments. • The lipids as constituents of chemical barriers Biological membranes • The lipids of biological membranes: phospholipids, glycolipids and cholesterol • The organization dual layer or in micelle • The fluidity of the phospholipid bilayer: the role of unsaturated fats • The intrinsic and extrinsic proteins • The theory of fluid Mosaic The transport mechanisms through membranes • the lipid bilayer permeability • simple and facilitated diffusion • Passive transport and active transport • channel proteins and carrier proteins: kinetic properties of the two systems and operating methods • Glucose Transporter • Pump Na + / K + ATPase: operating mode • Antiport and Simport • ligand-activated channels and channels activated by voltage • The membrane potential and the action potential Mitochondria and ATP synthesis • General knowledge on the process of glycolysis, oxidation of pyruvate, Krebs cycle and the electron transport chain • The structure of the mitochondrion • The mitochondrial genome • The evolutionary origin of mitochondria • The transport of proteins in mitochondria The endoplasmic reticulum and Golgi apparatus • Summary of the membrane proteins and secretion • Glycosylation and maturation of proteins in the Golgi • vesicular traffic: vesicle formation, vesicle movement, recognition of the target organelle • Exocytosis addressing mechanisms of proteins in cellular compartments • signal sequences and protein localization (entry into the nucleus, the endoplasmic reticulum, the mitochondria) endocytosis • pinocytosis, phagocytosis and receptor-mediated endocytosis Degradation of biological macromolecules in the cell • The lysosome • The proteasome The peroxisomes the cytoskeleton • Microfilaments contractile actin and myosin and cell movement • intermediate filaments • Microtubules and organelle movement • Muscle contraction The extracellular matrix • The collagen, laminin the fibronectin, proteoglycans • The extracellular matrix proteins establish multiple interactions • The matrix-cell interaction is mediated by specific receptors: the integrins • Structure and function of integrins and cadherins The cell cycle and mitosis • The cell cycle G1, S, G2, and M. • The role of cyclins and cdk in cell cycle progression • The check point of cell cycle checkpoint in G1 (Rb / E2F), G2 (p53) and mitotic checkpoint (Cdc20 / APC). Cell death and apoptosis • necrosis • Apoptosis: the intrinsic pathway (p53 and mitochondria) and extrinsic (the death receptor) Gene flow of information: the definition of gene era ENCODE • DNA replication and maintenance of network integrity • DNA Transcription: synthesis of RNA and their maturation • Influence of environment on gene flow: Epigenetics • The RNA interference
Close course details
Show parent course details
Print
CourseEukaryotic cell biology
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCORAZZARI Marco
TeachersCORAZZARI Marco
Course typeGruppi
Year1
PartitionGruppo C
Teaching languageItalian
AbstractThis course deals with the biology of the eukaryotic cell: structure, function and biosynthesis of cell membranes and organelles; the cytoskeleton and the extracellular matrix. Chromatin structure, the synthesis of RNA and protein and gene flow of information.
Reference textsAlberts, Bray, Hopkin, Johnson, Lewis et al BIOLOGIA MOLECOLARE DELLA CELLULA (l'essenziale) ed. Zanichelli Karp BIOLOGIA CELLULARE E MOLECOLARE ed. EDISES Cooper, Hausman LA CELLULA - un approccio molecolare ed. Piccin Ginelli, Malcovati Molecole, Cellule e Organismi. ed. EdiSES
Teaching targetsThe module will provide students with the basic knowledge on the structure, organization and function of the eukaryotic cell. Particular attention will be given to the understanding of the molecular mechanisms that regulate cell behavior and their biotechnological application. The Programma esteso Struttura ed organizzazione della cellula • Definizione di essere vivente • La cellula eucariotica e la cellula procariotica • I compartimenti cellulari. • I lipidi come costituenti di barriere chimiche Le membrane biologiche • I lipidi delle membrane biologiche: fosfolipidi, glicolipidi e colesterolo • L'organizzazione a doppio strato o a micella • La fluidità' del doppio strato fosfolipidico: ruolo dei grassi insaturi • Le proteine intrinseche e proteine estrinseche • La teoria del Mosaico fluido I meccanismi di trasporto attraverso le membrane • Caratteristiche di permeabilità del doppio strato lipidico • Diffusione semplice e diffusione facilitata • Trasporto passivo e trasporto attivo • Proteine canale e proteine trasportatrici: caratteristiche cinetiche dei due sistemi e modalità di funzionamento • Trasportatore del glucosio • Pompa Na+/K+ ATPasi: modalità di funzionamento • Antiporto e simporto • Canali attivati da ligando e canali attivati da voltaggio • ll potenziale di membrana e il potenziale d’azione Mitocondri e la sintesi di ATP • Nozioni generali sul processo di glicolisi, ossidazione del piruvato, ciclo di Krebs e catena di trasporto degli elettroni • La struttura del mitocondrio • Il genoma mitocondriale • L’origine evolutiva del mitocondrio • Il trasporto delle proteine nel mitocondrio Reticolo endoplasmatico rugoso e apparato di Golgi • Sintesi delle proteine di membrana e di secrezione • Glicosilazione e maturazione delle proteine nel Golgi • Traffico vescicolare: formazione di vescicole, movimento delle vescicole, riconoscimento del organello bersaglio • Esocitosi Meccanismi di indirizzamento delle proteine nei compartimenti cellulari • Sequenze segnale e localizzazione delle proteine (entrata nel nucleo, nel reticolo endoplasmatico, nel mitocondrio) Endocitosi • Pinocitosi, fagocitosi e endocitosi mediata da recettore Degradazione delle macromolecole biologiche nella cellula • Il lisosoma • Il proteosoma I perossisomi Il citoscheletro • Microfilamenti contrattili di actina e miosina e il movimento cellulare • Filamenti intermedi • Microtubuli ed il movimento degli organelli • La contrazione muscolare La matrice extracellulare • I collageni, laminine le fibronectine, i proteoglicani • Le proteine della matrice extracellulare stabiliscono interazioni multiple • L'interazione matrice-cellula è mediata da recettori specifici: le integrine • Struttura e funzione delle integrine e delle caderine Il ciclo cellulare e la mitosi • Il ciclo cellulare G1, S, G2 ed M. • Il ruolo delle cicline e delle cdk nella progressione del ciclo cellulare • I check point del ciclo cellulare: check point di G1 (Rb/E2F), di G2 (p53) e check point mitotico (cdc20/APC). Morte cellulare e apoptosi • Necrosi • Apoptosi: la via intrinseca (p53 e il mitocondrio) e la via estrinseca (i recettori di morte) Flusso dell’informazione genica: la definizione di gene nell’era ENCODE • Replicazione del DNA e mantenimento della sua integrità • Trascrizione del DNA: sintesi degli RNA e loro maturazione • Influenza dell’ambiente sul flusso genico: Epigenetica • Stabilità degli RNA: l’interferenza module will also address the cellular and post-genomic methods that have enabled it to acquire detailed information on cell function.
PrerequisitesThe student must be in possession of biology and genetics concepts, such as those offered at the high school.
Didattics MethodsPresentations in MS-Powerpoint format.
Other informationsVideo projector and computers with Internet connection supplied to the classroom
Grading rulesThe exam consists of a written test with multiple choice questions.
Full argumentsStructure and organization of the cell • Definition life • The eukaryotic cell and prokaryotic cell • The cellular compartments. • The lipids as constituents of chemical barriers Biological membranes • The lipids of biological membranes: phospholipids, glycolipids and cholesterol • The organization dual layer or in micelle • The fluidity of the phospholipid bilayer: the role of unsaturated fats • The intrinsic and extrinsic proteins • The theory of fluid Mosaic The transport mechanisms through membranes • the lipid bilayer permeability • simple and facilitated diffusion • Passive transport and active transport • channel proteins and carrier proteins: kinetic properties of the two systems and operating methods • Glucose Transporter • Pump Na + / K + ATPase: operating mode • Antiport and Simport • ligand-activated channels and channels activated by voltage • The membrane potential and the action potential Mitochondria and ATP synthesis • General knowledge on the process of glycolysis, oxidation of pyruvate, Krebs cycle and the electron transport chain • The structure of the mitochondrion • The mitochondrial genome • The evolutionary origin of mitochondria • The transport of proteins in mitochondria The endoplasmic reticulum and Golgi apparatus • Summary of the membrane proteins and secretion • Glycosylation and maturation of proteins in the Golgi • vesicular traffic: vesicle formation, vesicle movement, recognition of the target organelle • Exocytosis addressing mechanisms of proteins in cellular compartments • signal sequences and protein localization (entry into the nucleus, the endoplasmic reticulum, the mitochondria) endocytosis • pinocytosis, phagocytosis and receptormediated endocytosis Degradation of biological macromolecules in the cell • The lysosome • The proteasome The peroxisomes the cytoskeleton • Microfilaments contractile actin and myosin and cell movement • intermediate filaments • Microtubules and organelle movement • Muscle contraction The extracellular matrix • The collagen, laminin the fibronectin, proteoglycans • The extracellular matrix proteins establish multiple interactions • The matrix-cell interaction is mediated by specific receptors: the integrins • Structure and function of integrins and cadherins The cell cycle and mitosis • The cell cycle G1, S, G2, and M. • The role of cyclins and cdk in cell cycle progression • The check point of cell cycle checkpoint in G1 (Rb / E2F), G2 (p53) and mitotic checkpoint (Cdc20 / APC). Cell death and apoptosis • necrosis • Apoptosis: the intrinsic pathway (p53 and mitochondria) and extrinsic (the death receptor) Gene flow of information: the definition of gene era ENCODE • DNA replication and maintenance of network integrity • DNA Transcription: synthesis of RNA and their maturation • Influence of environment on gene flow: Epigenetics • The RNA interference
Close course details
Show parent course details
Print
CourseGenetics of microorganisms and eukaryotic
Course IDMS0442
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
TeachersPERSICHETTI Francesca, CORAZZARI Marco
CFU5
Teaching duration (hours)40
Individual study time 85
SSDBIO/18 - Genetics
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryA - Base
Year1
PeriodSecondo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Sites and/or partitions
Gruppo A
Gruppo B
Gruppo C
Close course details
Show parent course details
Print
CourseGenetics of microorganisms and eukaryotic
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderPERSICHETTI Francesca
TeachersPERSICHETTI Francesca
Course typeGruppi
Year1
PartitionGruppo A
Teaching languageItalian
AbstractThe course provides knowledge on the structure, organization, replication and transmission of the hereditary material in prokaryotes and eukaryotes.
Reference textsRUSSEL P.J. Genetica - Un approccio molecolare. Ed. Pearson GRIFFITHS A.J.F., WESSLER S.R., CARROLL S.B., DOEBLEY J. Genetica - Principi di analisi formale. Ed. Zanichelli. SNUSTAD P.D., SIMMONS M.J.- Principi di genetica. Ed. EdiSES.
Teaching targetsThe aim of the course is to provide students with knowledge and understanding of the structure, organization, replication and trasmission of the genetic material in prokaryotes and eukaryotes. At the end of the course students will be able to apply their knowledge to solve Mendelian genetic problems and its extensions and to illustrate how transfer of genetic information occurs in bacteria. A good understanding of the key themes and arguments of the course will provide students with an autonomy of judgment in the analysis of the genetic questions and in their interpretation. As a result of these in-depth studies, increased communication skills will be developed and students will be able to present the arguments of the course in a clear and understandable manner and with the use of correct scientific terminology. Finally, the improvement of students’ learning skills will lead to a growing interest in the subject of the course and to an increased ability to link genetic topics among them and with other biological disciplines.
PrerequisitesBasic knowledge of biology.
Didattics MethodsClass lectures.
Other informationsLearning control: In-class writing exercises
Grading rulesWritten test. The test consists of 30 multiple-choice questions.
Full argumentsThe genetic material: chemical composition and structure. Replication, transcription and translation of genetic material. DNA organization in prokaryotic and eukaryotic chromosomes. Mutation and DNA repair. Cell division: mitosis and meiosis. Mendel's laws and their applications. Human mendelian genetics: interpretation of pedigrees. Extension of mendelian analysis: multiple alleles and genetic interaction (epistasis, penetrance and expressivity). Chromosome theory of heredity. Sex chromosomes and sex determination. Genetic recombination, genetic maps, two- and three-point mapping. Genetics of microorganisms: bacteria, bacteriophages and yeast. Exchange of genetic material: conjugation, transformation and transduction. Regulation of gene expression in bacteria and bacteriophages.
Close course details
Show parent course details
Print
CourseGenetics of microorganisms and eukaryotic
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderPERSICHETTI Francesca
TeachersPERSICHETTI Francesca
Course typeGruppi
Year1
PartitionGruppo B
Teaching languageItalian
AbstractThe course provides knowledge on the structure, organization, replication and transmission of the hereditary material in prokaryotes and eukaryotes.
Reference textsRUSSEL P.J. Genetica - Un approccio molecolare. Ed. Pearson GRIFFITHS A.J.F., WESSLER S.R., CARROLL S.B., DOEBLEY J. Genetica - Principi di analisi formale. Ed. Zanichelli. SNUSTAD P.D., SIMMONS M.J.- Principi di genetica. Ed. EdiSES.
Teaching targetsThe aim of the course is to provide students with knowledge and understanding of the structure, organization, replication and trasmission of the genetic material in prokaryotes and eukaryotes. At the end of the course students will be able to apply their knowledge to solve Mendelian genetic problems and its extensions and to illustrate how transfer of genetic information occurs in bacteria. A good understanding of the key themes and arguments of the course will provide students with an autonomy of judgment in the analysis of the genetic questions and in their interpretation. As a result of these in-depth studies, increased communication skills will be developed and students will be able to present the arguments of the course in a clear and understandable manner and with the use of correct scientific terminology. Finally, the improvement of students’ learning skills will lead to a growing interest in the subject of the course and to an increased ability to link genetic topics among them and with other biological disciplines.
PrerequisitesBasic knowledge of biology.
Didattics MethodsClass lectures.
Other informationsLearning control: In-class writing exercises
Grading rulesWritten test. The test consists of 30 multiple-choice questions.
Full argumentsThe genetic material: chemical composition and structure. Replication, transcription and translation of genetic material. DNA organization in prokaryotic and eukaryotic chromosomes. Mutation and DNA repair. Cell division: mitosis and meiosis. Mendel's laws and their applications. Human mendelian genetics: interpretation of pedigrees. Extension of mendelian analysis: multiple alleles and genetic interaction (epistasis, penetrance and expressivity). Chromosome theory of heredity. Sex chromosomes and sex determination. Genetic recombination, genetic maps, two- and three-point mapping. Genetics of microorganisms: bacteria, bacteriophages and yeast. Exchange of genetic material: conjugation, transformation and transduction. Regulation of gene expression in bacteria and bacteriophages.
Close course details
Show parent course details
Print
CourseGenetics of microorganisms and eukaryotic
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCORAZZARI Marco
TeachersCORAZZARI Marco
Course typeGruppi
Year1
PartitionGruppo C
Teaching languageItalian
Reference textsRUSSEL P.J. Genetica - Un approccio molecolare. Ed. Pearson GRIFFITHS A.J.F., WESSLER S.R., CARROLL S.B., DOEBLEY J. Genetica - Principi di analisi formale. Ed. Zanichelli. SNUSTAD P.D., SIMMONS M.J.- Principi di genetica. Ed. EdiSES.
Teaching targetsThe aim of the module is to bring the student to the knowledge of the structure and organization of genetic material and the laws regulating its transmission and expression in the procariate and eukaryotic organisms
Didattics MethodsPower Point presentations
Other informationsComputer with a projector provided in the classroom, blackboard
Grading rulesWritten test
Full argumentsThe genetic material: chemical composition and structure. Replication, transcription and translation of genetic material. DNA organization in prokaryotic and eukaryotic chromosomes. Cell division: mitosis and meiosis. Genetic mutations: definition and molecular bases. Mendelian genetics: monohybrid and dihybrid crosses. Extent of Mendelian analysis: gene expression, multiple alleles, gene interactions, lethal alleles, complete dominance, incomplete dominance, codominance, epistasis, penetrance, expressivity, phenocopy and genetic heterogeneity; mitochondrial DNA, heteroplasmy and homoplasmy; gene linkage and crossing-over. Sexual chromosomes and sex determination. The Y chromosome. X-linked genes (dominance and recessivity): dosage compensation. Genetic recombination. Genetic maps. Saccharomyces cerevisiae as a model organism and its life cycle. The bacteriophage and prokaryotic genomes. Eukaryotic viruses. Plasmids and transposable elements. Mechanisms of genetic exchange in bacteria: transformation, conjugation, generalized and specialized transduction. Mapping genes. The operons. Adjusting gene expression in bacteria and bacteriophages.
Close course details
Print
CourseEnglish Language
Course IDMC004
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
TeachersBRADY Bernadette Catherine, ELLIS Jimi, CAREW Heather Alice
CFU5
Teaching duration (hours)40
Individual study time 85
SSDL-LIN/12 - Language and translation - English
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryC - Affine o integrativo
Year1
PeriodSecondo Semestre
SiteNOVARA
Frequenza obbligatoriaYes
Grading typeFinal grade
Sites and/or partitions
Gruppo A
Gruppo B
Gruppo C
Close course details
Show parent course details
Print
CourseEnglish Language
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderBRADY Bernadette Catherine
TeachersBRADY Bernadette Catherine
Course typeGruppi
Year1
PartitionGruppo A
Close course details
Show parent course details
Print
CourseEnglish Language
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderELLIS Jimi
TeachersELLIS Jimi
Course typeGruppi
Year1
PartitionGruppo B
Close course details
Show parent course details
Print
CourseEnglish Language
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCAREW Heather Alice
TeachersCAREW Heather Alice
Course typeGruppi
Year1
PartitionGruppo C
Close course details
Print
CourseFundamentals of Mathematics, Physics
Course IDMS0439
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderRINALDI Maurizio
TeachersPANZIERI Daniele, RUSPA Marta, SITTA Mario, RINALDI Maurizio, FERRERO Alberto
CFU8
Course typeAttività formativa integrata
Course mandatorietyMandatory course
Year1
PeriodPrimo Semestre
SiteNOVARA
Grading typeFinal grade
Modules
Course ID Course SSD Teachers
BT013 Physics Foundations FIS/01 - Experimental physics PANZIERI Daniele, RUSPA Marta, SITTA Mario
BT009 Mathematics MAT/04 - Mathematics education and history of mathematics RINALDI Maurizio, FERRERO Alberto
Close course details
Show parent course details
Print
CoursePhysics Foundations
Course IDBT013
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderPANZIERI Daniele
TeachersPANZIERI Daniele, RUSPA Marta, SITTA Mario
CFU5
Teaching duration (hours)32
Individual study time 87
SSDFIS/01 - Experimental physics
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryA - Base
Year1
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Sites and/or partitions
Gruppo A
Gruppo B
Gruppo C
Close course details
Show parent course details
Print
CoursePhysics Foundations
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderRUSPA Marta
TeachersPANZIERI Daniele, RUSPA Marta
Course typeGruppi
Year1
PartitionGruppo A
Teaching languageItalian
AbstractElements of classical Physics. See Extended Program for more detailed information.
Reference textsR. Resnick, D. Halliday "Fisica 1", Ed. Ambrosiana and any other equivalent text.
Teaching targetsProvide the basic skills of the classical Physics, with a particular attention to the arguments relevant for students of Biotechnology
PrerequisitesGood knowledge of Mathematcis of the last year high school
Didattics MethodsClassroom lessons and exercises.
Other informationsThe learning process will be verified through the final exam.
Grading ruleswritten exam based on a test with multiple choice and two simple numeric excercises and oral verification based on the discussion of some, 2 or 3) topics treated during the lessons.
Full argumentsMeasures - scalars and vectors. Kinematics in one and two dimensions. Dynamics, Work and Energy. Rotational Kinematic and Dynamic. Fluids and elasticity. Temperature, Kinetic laws of gases, Thermodynamics laws. Electric field, current in solids, liquids and gases. Electric circuits, Magnetic field,. Electromagnetic waves. Optics and optic instruments. Diffraction and interference.
Close course details
Show parent course details
Print
CoursePhysics Foundations
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderPANZIERI Daniele
TeachersPANZIERI Daniele
Course typeGruppi
Year1
PartitionGruppo B
Teaching languageItalian
AbstractElements of classical Physics. See Extended Program for more detailed information.
Reference textsR. Resnick, D. Halliday "Fisica 1", Ed. Ambrosiana and any other equivalent text.
Teaching targetsProvide the basic skills of the classical Physics, with a particular attention to the arguments relevant for students of Biotechnology
PrerequisitesGood knowledge of Mathematcis of the last year high school
Didattics MethodsClassroom lessons and exercises.
Other informationsThe learning process will be verified through the final exam.
Grading ruleswritten axam based on a test with multiple choice and two simple numeric excercises and oral verification based on the discussion of some, 2 or 3) topics treated during the lessons.
Full argumentsMeasures - scalars and vectors. Kinematics in one and two dimensions. Dynamics, Work and Energy. Rotational Kinematic and Dynamic. Fluids and elasticity. Temperature, Kinetic laws of gases, Thermodynamics laws. Electric field, current in solids, liquids and gases. Electric circuits, Magnetic field,. Electromagnetic waves. Optics and optic instruments. Diffraction and interference.
Close course details
Show parent course details
Print
CoursePhysics Foundations
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderSITTA Mario
TeachersSITTA Mario
Course typeGruppi
Year1
PartitionGruppo C
Teaching languageItalian
AbstractFundamental concepts of Classical Physics: Mechanics, Calorimetry and Thermodynamics, Electricity and Magnetism.
Reference textsA.Giambattista, B.McCarthy, R.Richardson, Fisica generale, McGraw Hill D.C.Giancoli, Fisica, Casa Editrice Ambrosiana D.Halliday, R.Resnick, J.Walker, Fondamenti di Fisica, Casa Editrice Ambrosiana.
Teaching targetsTo give the basic knowledge of classical Physics, with particular attention to the topics most relevant to Biotechnology
PrerequisitesGood knowledge of mathematics at the level of high school final year.
Didattics MethodsFrontal lectures on the theoretical part and numerical exercises.
Other informationsStudents must prove to have learnt the fundamental concepts of classical Physics and to be able to solve simple numerical exercizes
Grading rulesWritten exam and oral verification.
Full argumentsRecall of basic Mathematics. Physical quantities. Kinematics of a material point. Forces and the Principles of Dynamics. Work and energy. Elements of Mechanics of fluids. Temperature, heat and the Principles of Thermodynamics. Electric charge. Electric current. The magnetic field. Elements of Mechanics of waves and of geometrical Optics.
Close course details
Show parent course details
Print
CourseMathematics
Course IDBT009
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderRINALDI Maurizio
TeachersRINALDI Maurizio, FERRERO Alberto
CFU3
Teaching duration (hours)24
Individual study time 51
SSDMAT/04 - Mathematics education and history of mathematics
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryC - Affine o integrativo
Year1
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Sites and/or partitions
Gruppo A
Gruppo B
Gruppo C
Close course details
Show parent course details
Print
CourseMathematics
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderRINALDI Maurizio
TeachersRINALDI Maurizio
Course typeGruppi
Year1
PartitionGruppo A
Teaching languageItalian
AbstractFunctions Derivatives Integrals
Reference textsSergio Invernizzi, Maurizio Rinaldi, Andrea Sgarro, Moduli di Matematica e Statistica, Zanichelli Editore, Bologna 2000
Teaching targets*Knowledge and understanding The course is intended to provide students with the knowledge and the ability to manage the mathematical tools required to understand and follow the other courses of the Degree. More specifically the course aims to provide students with basic methods of differential and integral calculus needed to understand mathematical models. *Applying knowledge and understanding Students are expected to be able to use the acquired skills even in a multidisciplinary context and they should be able to resort to mathematics and statistics even in situations external to the course. *Making judgements. At the end of the course students are expected to apply learned methods even in different situations and that they have acquired the tools needed to extend their knowledge by themselves. * Communication skills At the end of the course students are expected to be able to express the learned concepts in a clear way. * Learning skills. During the course students should learn how to study by choosing their personal path and should become able to choose the appropriate resources, possibly online.
PrerequisitesThe student should have the basic knowledge of the subject that can be acquired in a normal high school. In particular: arithmetic operations, powers, Cartesian plane, equation of the line, parabola and circumference, angles, measured in degrees and radians, circular functions, fundamental formulas of plane and solid geometry.
Didattics MethodsLectures are given in the classroom.
Other informationsReference material and further details are provided on the DIR website. https://www.dir.uniupo.it/course/view.php?id=148 Enrolment key is provided during the lectures.
Grading rulesOngoing Quizzes and online Final Examination. The ongoing quizzes are assigned periodically at the end of a given subject. The Final focuses on all the course matters. Final evaluation gives a weight of 20% to the ongoing quizzes and 80% to the Final. Ongoing quizzes could be replaced by an oral examination
Full argumentsCredit 1 [Functions] Concept of mathematical functions. Domain and codomain. Image. Exponential and power functions. Function composition. Invertible function and inverse function. Inverse circular functions. Logarithms. Credit 2 [Derivatives] Meaning of Derivative Geometric meaning of the derivative. Graphic computation of the derivative through repeated zooms. Approximation of the derivative at a point via Newton quotient. Three point rule. Derivative for tabulated functions. Derivative function. Differentiation rules Derivative of the sum, of the product, of the composite function, of the reciprocal and of the quotient. Derivative of the inverse function. Application of the derivatives Increasing and decreasing functions, Minima and maxima of functions. Computation of maxima and minima with the help of the derivative, Second derivative and study of concavity-convexity of a graph. Credit 3 [Area and Integrals] Numerical Integration Definite integral for positive functions over finite intervals, Computation. Numerical integration with the rectangle methods and trapezoid method. Stochastic integration with the Montecarlo methods. Exact integration The Fundamental Theorem of Calculus. Indefinite integral and antiderivatives. Computation of antiderivatives. Area between two curves. Extensions of the Integral Integrals for non positive functions. Inversions of integration endpoints.
Close course details
Show parent course details
Print
CourseMathematics
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderRINALDI Maurizio
TeachersRINALDI Maurizio
Course typeGruppi
Year1
PartitionGruppo B
Teaching languageItalian
AbstractFunctions Derivatives Integrals
Reference textsSergio Invernizzi, Maurizio Rinaldi, Andrea Sgarro, Moduli di Matematica e Statistica, Zanichelli Editore, Bologna 2000
Teaching targets*Knowledge and understanding The course is intended to provide students with the knowledge and the ability to manage the mathematical tools required to understand and follow the other courses of the Degree. More specifically the course aims to provide students with basic methods of differential and integral calculus needed to understand mathematical models. *Applying knowledge and understanding Students are expected to be able to use the acquired skills even in a multidisciplinary context and they should be able to resort to mathematics and statistics even in situations external to the course. *Making judgements. At the end of the course students are expected to apply learned methods even in different situations and that they have acquired the tools needed to extend their knowledge by themselves. * Communication skills At the end of the course students are expected to be able to express the learned concepts in a clear way. * Learning skills. During the course students should learn how to study by choosing their personal path and should become able to choose the appropriate resources, possibly online.
PrerequisitesThe student should have the basic knowledge of the subject that can be acquired in a normal high school. In particular: arithmetic operations, powers, Cartesian plane, equation of the line, parabola and circumference, angles, measured in degrees and radians, circular functions, fundamental formulas of plane and solid geometry.
Didattics MethodsLectures are given in the classroom.
Other informationsReference material and further details are provided on the DIR website. https://www.dir.uniupo.it/course/view.php?id=148 Enrolment key is provided during the lectures.
Grading rulesOngoing Quizzes and online Final Examination. The ongoing quizzes are assigned periodically at the end of a given subject. The Final focuses on all the course matters. Final evaluation gives a weight of 20% to the ongoing quizzes and 80% to the Final. Ongoing quizzes could be replaced by an oral examination.
Full argumentsCredit 1 [Functions] Concept of mathematical functions. Domain and codomain. Image. Exponential and power functions. Function composition. Invertible function and inverse function. Inverse circular functions. Logarithms. Credit 2 [Derivatives] Meaning of Derivative Geometric meaning of the derivative. Graphic computation of the derivative through repeated zooms. Approximation of the derivative at a point via Newton quotient. Three point rule. Derivative for tabulated functions. Derivative function. Differentiation rules Derivative of the sum, of the product, of the composite function, of the reciprocal and of the quotient. Derivative of the inverse function. Application of the derivatives Increasing and decreasing functions, Minima and maxima of functions. Computation of maxima and minima with the help of the derivative, Second derivative and study of concavity-convexity of a graph. Credit 3 [Area and Integrals] Numerical Integration Definite integral for positive functions over finite intervals, Computation. Numerical integration with the rectangle methods and trapezoid method. Stochastic integration with the Montecarlo methods. Exact integration The Fundamental Theorem of Calculus. Indefinite integral and antiderivatives. Computation of antiderivatives. Area between two curves. Extensions of the Integral Integrals for non positive functions. Inversions of integration endpoints.
Close course details
Show parent course details
Print
CourseMathematics
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderFERRERO Alberto
TeachersFERRERO Alberto
Course typeGruppi
Year1
PartitionGruppo C
Teaching languageItalian
AbstractFunctions Derivatives Integrals
Reference textsSergio Invernizzi, Maurizio Rinaldi, Andrea Sgarro, Moduli di Matematica e Statistica, Zanichelli Editore, Bologna 2000
Teaching targets*Knowledge and understanding The course is intended to provide students with the knowledge and the ability to manage the mathematical tools required to understand and follow the other courses of the Degree. More specifically the course aims to provide students with basic methods of differential and integral calculus needed to understand mathematical models. *Applying knowledge and understanding Students are expected to be able to use the acquired skills even in a multidisciplinary context and they should be able to resort to mathematics and statistics even in situations external to the course. *Making judgements. At the end of the course students are expected to apply learned methods even in different situations and that they have acquired the tools needed to extend their knowledge by themselves. * Communication skills At the end of the course students are expected to be able to express the learned concepts in a clear way. * Learning skills. During the course students should learn how to study by choosing their personal path and should become able to choose the appropriate resources, possibly online.
PrerequisitesThe student should have the basic knowledge of the subject that can be acquired in a normal high school. In particular: arithmetic operations, powers, Cartesian plane, equation of the line, parabola and circumference, angles, measured in degrees and radians, circular functions, fundamental formulas of plane and solid geometry.
Didattics MethodsLectures are given in the classroom.
Other informationsReference material and further details are provided on the DIR website. https://www.dir.uniupo.it/course/view.php?id=148 Enrolment key is provided during the lectures.
Grading rulesOngoing Quizzes and online Final Examination. The ongoing quizzes are assigned periodically at the end of a given subject. The Final focuses on all the course matters. Final evaluation gives a weight of 20% to the ongoing quizzes and 80% to the Final. Ongoing quizzes could be replaced by an oral examination.
Full argumentsCredit 1 [Functions] Concept of mathematical functions. Domain and codomain. Image. Exponential and power functions. Function composition. Invertible function and inverse function. Inverse circular functions. Logarithms. Credit 2 [Derivatives] Meaning of Derivative Geometric meaning of the derivative. Graphic computation of the derivative through repeated zooms. Approximation of the derivative at a point via Newton quotient. Three point rule. Derivative for tabulated functions. Derivative function. Differentiation rules Derivative of the sum, of the product, of the composite function, of the reciprocal and of the quotient. Derivative of the inverse function. Application of the derivatives Increasing and decreasing functions, Minima and maxima of functions. Computation of maxima and minima with the help of the derivative, Second derivative and study of concavity-convexity of a graph. Credit 3 [Area and Integrals] Numerical Integration Definite integral for positive functions over finite intervals, Computation. Numerical integration with the rectangle methods and trapezoid method. Stochastic integration with the Montecarlo methods. Exact integration The Fundamental Theorem of Calculus. Indefinite integral and antiderivatives. Computation of antiderivatives. Area between two curves. Extensions of the Integral Integrals for non positive functions. Inversions of integration endpoints.
Close course details
Print
CourseGENERAL CHEMISTRY
Course IDBT006
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderANASTASIA Mario
TeachersANASTASIA Mario, BOCCALERI Enrico, GABANO Elisabetta
CFU5
Teaching duration (hours)40
Individual study time 85
SSDCHIM/03 - General and inorganic chemistry
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryA - Base
Year1
PeriodPrimo Semestre
SiteNOVARA
Frequenza obbligatoriaYes
Grading typeFinal grade
Sites and/or partitions
Gruppo A
Gruppo B
Gruppo C
Close course details
Show parent course details
Print
CourseGENERAL CHEMISTRY
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderANASTASIA Mario
TeachersANASTASIA Mario
Course typeGruppi
Year1
PartitionGruppo A
Close course details
Show parent course details
Print
CourseGENERAL CHEMISTRY
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderBOCCALERI Enrico
TeachersBOCCALERI Enrico
Course typeGruppi
Year1
PartitionGruppo B
Teaching languageItalian
AbstractThe purpose of the course is to provide students the basic knowledge in general and inorganic chemistry. The connection with the various biological disciplines will be discussed, in particular with the use of examples and numerical exercises
Reference textsThe presentations will be available on the D.I.R. site. Suggested Reference Books: M. e L. Anastasia, Chimica di Base per le Scienze della Vita, VOL. 1 - SECONDA EDIZIONE “with ONLINE exercises. Raymond Chang Chemstry Fourth Edition, McGraw.Hill Princeton;Paolo Chiorboli Fondamenti di Chimica, Utet, Torino.
Teaching targetsThe course aims at introducing the students of the main understanding of chemical phenomena, with details of applicative aspects. A supplementary noteworthy effort will be set on the chemical behavior of aqueous solutions and related chemical reactions, to establish the necessary basis for supplementary chemistry courses and related biological courses.
PrerequisitesNone
Didattics MethodsClassroom lessons in which the main topics reported in the abovementioned program will be disseminated. Course is hereafter completed by practical classroom exercises to tackle a few of the exposed topics.
Other informationsLearning Control: Interactive discussion of the explained topics will be stimulated. Students will be involved in the shared resolution of applicative exercises, to strengthen their knowledge and test actual progresses.
Grading rulesThe final exam is a 2-hour written test, containing 6 multiple choice questions of general chemistry and 4 applied exercises.
Full argumentsThe matter, properties and measures: mass, weight and volume. Physical and chemical properties. Intensive properties (eg T) and extensively (V, m). Fundamental and derivative quantities: length, mass, time, temperature, quantity of substance (n). Classification of the matter: pure substances (elements and compounds) and mixtures. Elements and compounds (molecular and ionic): atoms and molecules. Atomic number (Z) and mass number (A), isotopes and ions. Cations and anions. Atomic mass (ma) and molecular mass (mm) of the substances. The mole: unit of the quantity of substance (fundamental quantity in the International System): calculations with the moles, conversion of masses (g) into quantity of substance n (mol) and vice versa. The current atomic model: atomic nucleus and orbitals, quantum numbers: principal, secondary and magnetic. The electrons and the quantum number of spin. The distribution of the elements in the periodic table. The periodic table of the elements, its blocks and its usefulness. Identify periodic properties: atomic radius, ionization energy (Ei), electronic affinity (Eea), electronegativity and oxidation number. Periodic properties of elements (ionization energy, electronic affinity) and how they vary over a period and a group. Chemical Properties and Group. The chemical bond: strong or ionic bonds, covalent metallic and weak interactions (interactions between molecules or van der Waals interactions, hydrogen bonds, and ion-molecule attractions). The ionic bond and the formation of crystalline lattices; the covalent bond and the molecules of elements and compounds; the homopolar and heteropolar covalent bond and the dipolar moment of the molecules. The interactions between molecules in detail: between polar molecules, between apolar molecules and those between molecules and ions; the hydrogen bridge bond. The three aggregation states of the matter (solid, liquid and gaseous) and interactions between molecules. The correlation of intermolecular interactions with physical quantities (i.e., boiling point). The solutions and their properties. The concentration of a solution and its units (molarity, molarity, normality, molar fraction and percentages p / p, p / v and v / v). The solubility of a solute, solid or gas, in a solvent. Factors affecting the solubility of a solute (T and P). Colligative properties and osmotic pressure: solutions of ions and of covalent not ionized solutes in water. Hypertonic, hypotonic, isotonic and physiological solutions. Quantitative chemical reactions. Equilibrium reactions and equilibrium constants Ke or Kp. Definition and expression of Ke of a reaction. Meaning of Ke and factors affecting its value. Le Chatelier’s principle and the variation of the composition at the equilibrium according to the concentration of reagents and products, T and P. Redox reactions, their balancing (in H +, and in OH-). Spontaneity of redox reactions (in c.s and not), based on the redox potential (standard and not). Equilibria in aqueous solution: water autoionisation equilibrium and definition of pH. The approximate calculation of pH of aqueous solutions of strong acids and bases, weak acids and bases at various concentrations. Hydrolysis. The buffer solutions: composition and mechanism of action. Calculation of pH of buffer solutions and buffering power. Thermochemistry and thermodynamics: Enthalpy and variations of enthalpy of a chemical process. Entropy, free energy and spontaneity of a process in closed and isolated systems. Standard free energy and relationship with the equilibrium constant of a reaction. Kinetics: reaction speed and factors that influence it. Kinetic law and order of a reaction. Collision Theory (Arrhenius) and the theory of the activated complex and transition state (Eyring); dependence of the speed of a reaction on T. Catalysts, role.Stechiometry program: SI measure unit; Exercises on physical quantities and conversion between them. Exercises on mass, on weight transformation and vice versa, on the amount of substance and the amount of atoms and molecules. Exercises on atomic and molecular masses and their transformation into mass of moles of atoms and molecules, and on molar mass. Electronic elements configuration. Geometry of small molecules and ions according to Lewis and hybridization of the central atom. Calculation of the formal charge and the oxidation number of the atoms in a molecule or ion. The equation of the perfect gas and its use to solve gas problems. Solutions: exercises on the concentration of a solution and its units: Molarity, molarity, molar fraction, normality; Commercial or physical expressions: % in mass, mixed, in volume. Parts per million. Calculations to switch from one expression to the other and use of density. Exercises on colligative properties of solutions: osmotic pressure. Chemical reactions and their balancing, laws of stoichiometry and their application. Chemical reactions and limiting factor. Mass, molar mass, mole and Avogadro’s constant in chemical reactions. Exercises on chemical equilibrium: to write and calculate the equilibrium constant in aqueous solution and gaseous phase. CM calculations at the equilibrium knowing Ke and CM and vice versa. Redox reduction and their balancing. Calculations of the spontaneity of a redox reaction under standard conditions. Quantitative ratios in redox reactions. Equilibria in aqueous solution of acids and bases: pH and its approximate calculation in acid and base solutions. Buffer solutions and calculation of their pH. Solubility product. Simple calculations on the variations of enthalpy, entropy and free energy of a chemical reaction. Simple calculations on the kinetics of reactions.
Close course details
Show parent course details
Print
CourseGENERAL CHEMISTRY
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderGABANO Elisabetta
TeachersGABANO Elisabetta
Course typeGruppi
Year1
PartitionGruppo C
Teaching languageItalian
AbstractThe purpose of the course is to provide students the basic knowledge in general and inorganic chemistry. The connection with the various biological disciplines will be discussed, in particular with the use of examples and numerical exercises
Reference textsThe presentations will be available on the D.I.R. site. Suggested Reference Books: M. e L. Anastasia, Chimica di Base per le Scienze della Vita, VOL. 1 - SECONDA EDIZIONE “with ONLINE exercises. Raymond Chang Chemstry Fourth Edition, McGraw.Hill Princeton;Paolo Chiorboli Fondamenti di Chimica, Utet, Torino.
Teaching targetsThe course aims at introducing the students of the main understanding of chemical phenomena, with details of applicative aspects. A supplementary noteworthy effort will be set on the chemical behavior of aqueous solutions and related chemical reactions, to establish the necessary basis for supplementary chemistry courses and related biological courses.
PrerequisitesNone
Didattics MethodsClassroom lessons in which the main topics reported in the abovementioned program will be disseminated. Course is hereafter completed by practical classroom exercises to tackle a few of the exposed topics.
Other informationsLearning Control: Interactive discussion of the explained topics will be stimulated. Students will be involved in the shared resolution of applicative exercises, to strengthen their knowledge and test actual progresses.
Grading rulesThe final exam is a 2-hour written test, containing 6 multiple choice questions of general chemistry and 4 applied exercises.
Full argumentsThe matter, properties and measures: mass, weight and volume. Physical and chemical properties. Intensive properties (eg T) and extensively (V, m). Fundamental and derivative quantities: length, mass, time, temperature, quantity of substance (n). Classification of the matter: pure substances (elements and compounds) and mixtures. Elements and compounds (molecular and ionic): atoms and molecules. Atomic number (Z) and mass number (A), isotopes and ions. Cations and anions. Atomic mass (ma) and molecular mass (mm) of the substances. The mole: unit of the quantity of substance (fundamental quantity in the International System): calculations with the moles, conversion of masses (g) into quantity of substance n (mol) and vice versa. The current atomic model: atomic nucleus and orbitals, quantum numbers: principal, secondary and magnetic. The electrons and the quantum number of spin. The distribution of the elements in the periodic table. The periodic table of the elements, its blocks and its usefulness. Identify periodic properties: atomic radius, ionization energy (Ei), electronic affinity (Eea), electronegativity and oxidation number. Periodic properties of elements (ionization energy, electronic affinity) and how they vary over a period and a group. Chemical Properties and Group. The chemical bond: strong or ionic bonds, covalent metallic and weak interactions (interactions between molecules or van der Waals interactions, hydrogen bonds, and ion-molecule attractions). The ionic bond and the formation of crystalline lattices; the covalent bond and the molecules of elements and compounds; the homopolar and heteropolar covalent bond and the dipolar moment of the molecules. The interactions between molecules in detail: between polar molecules, between apolar molecules and those between molecules and ions; the hydrogen bridge bond. The three aggregation states of the matter (solid, liquid and gaseous) and interactions between molecules. The correlation of intermolecular interactions with physical quantities (i.e., boiling point). The solutions and their properties. The concentration of a solution and its units (molarity, molarity, normality, molar fraction and percentages p / p, p / v and v / v). The solubility of a solute, solid or gas, in a solvent. Factors affecting the solubility of a solute (T and P). Colligative properties and osmotic pressure: solutions of ions and of covalent not ionized solutes in water. Hypertonic, hypotonic, isotonic and physiological solutions. Quantitative chemical reactions. Equilibrium reactions and equilibrium constants Ke or Kp. Definition and expression of Ke of a reaction. Meaning of Ke and factors affecting its value. Le Chatelier’s principle and the variation of the composition at the equilibrium according to the concentration of reagents and products, T and P. Redox reactions, their balancing (in H +, and in OH-). Spontaneity of redox reactions (in c.s and not), based on the redox potential (standard and not). Equilibria in aqueous solution: water autoionisation equilibrium and definition of pH. The approximate calculation of pH of aqueous solutions of strong acids and bases, weak acids and bases at various concentrations. Hydrolysis. The buffer solutions: composition and mechanism of action. Calculation of pH of buffer solutions and buffering power. Thermochemistry and thermodynamics: Enthalpy and variations of enthalpy of a chemical process. Entropy, free energy and spontaneity of a process in closed and isolated systems. Standard free energy and relationship with the equilibrium constant of a reaction. Kinetics: reaction speed and factors that influence it. Kinetic law and order of a reaction. Collision Theory (Arrhenius) and the theory of the activated complex and transition state (Eyring); dependence of the speed of a reaction on T. Catalysts, role.Stechiometry program: SI measure unit; Exercises on physical quantities and conversion between them. Exercises on mass, on weight transformation and vice versa, on the amount of substance and the amount of atoms and molecules. Exercises on atomic and molecular masses and their transformation into mass of moles of atoms and molecules, and on molar mass. Electronic elements configuration. Geometry of small molecules and ions according to Lewis and hybridization of the central atom. Calculation of the formal charge and the oxidation number of the atoms in a molecule or ion. The equation of the perfect gas and its use to solve gas problems. Solutions: exercises on the concentration of a solution and its units: Molarity, molarity, molar fraction, normality; Commercial or physical expressions: % in mass, mixed, in volume. Parts per million. Calculations to switch from one expression to the other and use of density. Exercises on colligative properties of solutions: osmotic pressure. Chemical reactions and their balancing, laws of stoichiometry and their application. Chemical reactions and limiting factor. Mass, molar mass, mole and Avogadro’s constant in chemical reactions. Exercises on chemical equilibrium: to write and calculate the equilibrium constant in aqueous solution and gaseous phase. CM calculations at the equilibrium knowing Ke and CM and vice versa. Redox reduction and their balancing. Calculations of the spontaneity of a redox reaction under standard conditions. Quantitative ratios in redox reactions. Equilibria in aqueous solution of acids and bases: pH and its approximate calculation in acid and base solutions. Buffer solutions and calculation of their pH. Solubility product. Simple calculations on the variations of enthalpy, entropy and free energy of a chemical reaction. Simple calculations on the kinetics of reactions.
Close course details
Print
CourseHUMAN MORPHOLOGY AND MORPHOGENESIS
Course IDBT014
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderPRAT Maria Giovanna
TeachersBOCCAFOSCHI Francesca, CREMONA Ottavio, PRAT Maria Giovanna, FOLLENZI Antonia
CFU10
Course typeAttività formativa integrata
Course mandatorietyMandatory course
Year1
PeriodAnnuale
SiteNOVARA
Grading typeFinal grade
Modules
Course ID Course SSD Teachers
BT015 Human Anatomy BIO/16 - Human anatomy BOCCAFOSCHI Francesca, CREMONA Ottavio
MS0083 Histology Developmental biology BIO/17 - Histology PRAT Maria Giovanna, FOLLENZI Antonia
Close course details
Show parent course details
Print
CourseHuman Anatomy
Course IDBT015
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderBOCCAFOSCHI Francesca
TeachersBOCCAFOSCHI Francesca, CREMONA Ottavio
CFU4
Teaching duration (hours)32
Individual study time 68
SSDBIO/16 - Human anatomy
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryC - Affine o integrativo
Year1
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Sites and/or partitions
Gruppo A
Gruppo B
Gruppo C
Close course details
Show parent course details
Print
CourseHuman Anatomy
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderBOCCAFOSCHI Francesca
TeachersBOCCAFOSCHI Francesca
Course typeGruppi
Year1
PartitionGruppo A
Teaching languageItaliano
Reference textsTesti ed Atlanti di anatomia umana di livello universitario
Teaching targetsApprendimento delle nozioni di base dell’anatomia umana
PrerequisitesNon previsti
Grading rulesEsame scritto con domande a scelta multipla e aperte
Full argumentsGeneralità. Terminologia anatomica, posizione anatomica, definizione di posizione e movimento, organi, apparati e sistemi. Apparato locomotore. Generalità, struttura degli elementi ossei; tipologia, struttura e significati funzionali delle articolazioni; struttura del muscolo striato e del muscolo liscio, anatomia descrittiva e funzionale dei principali complessi osteo-muscolari. Apparato cardiovascolare. Il cuore: posizione e rapporti. Ciclo cardiaco, sistema di conduzione del cuore. Vene e arterie, anatomia topografica delle vie arteriose e venose e territori di vascolarizzazione. Apparato respiratorio. Anatomia descrittiva e funzionale delle vie aeree superiori ed inferiori (Cavità Nasali, Laringe, Trachea e Bronchi, Parenchima Polmonare, Pleure). Apparato digerente. Anatomia descrittiva e funzionale della: Cavità Buccale, Faringe, Esofago, Stomaco, Intestino e delle ghiandole annesse all’apparato digerente (Fegato, Pancreas, Cistifellea). Controllo ormonale dell’apparato digerente. Apparato urinario. Anatomia descrittiva e funzionale di: Reni, Pelvi, Ureteri, Vescica, Uretra maschile e femminile. Apparato genitale. MASCHILE - Anatomia descrittiva e funzionale di Testicoli, Prostata e Pene. FEMMINILE - Anatomia descrittiva e funzionale di Ovaia, Utero, Vagina. Sistema nervoso. SISTEMA NERVOSO CENTRALE – Anatomia descrittiva e funzionale di Midollo Spinale, Tronco encefalico,Cervelletto, Diencefalo, Telencefalo e Nuclei della Base. SISTEMA NERVOSO PERIFERICO - Correlazioni funzionali del sistema simpatico e parasimpatico, nomenclatura e significato dei Nervi Cranici. ORGANI DI SENSO - Occhio ed Orecchio.
Close course details
Show parent course details
Print
CourseHuman Anatomy
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderBOCCAFOSCHI Francesca
TeachersBOCCAFOSCHI Francesca
Course typeGruppi
Year1
PartitionGruppo B
Teaching languageItaliano
Reference textsTesti ed Atlanti di anatomia umana di livello universitario
Teaching targetsApprendimento delle nozioni di base dell’anatomia umana
PrerequisitesNon previsti
Grading rulesEsame scritto con domande a scelta multipla e aperte
Full argumentsGeneralità. Terminologia anatomica, posizione anatomica, definizione di posizione e movimento, organi, apparati e sistemi. Apparato locomotore. Generalità, struttura degli elementi ossei; tipologia, struttura e significati funzionali delle articolazioni; struttura del muscolo striato e del muscolo liscio, anatomia descrittiva e funzionale dei principali complessi osteo-muscolari. Apparato cardiovascolare. Il cuore: posizione e rapporti. Ciclo cardiaco, sistema di conduzione del cuore. Vene e arterie, anatomia topografica delle vie arteriose e venose e territori di vascolarizzazione. Apparato respiratorio. Anatomia descrittiva e funzionale delle vie aeree superiori ed inferiori (Cavità Nasali, Laringe, Trachea e Bronchi, Parenchima Polmonare, Pleure). Apparato digerente. Anatomia descrittiva e funzionale della: Cavità Buccale, Faringe, Esofago, Stomaco, Intestino e delle ghiandole annesse all’apparato digerente (Fegato, Pancreas, Cistifellea). Controllo ormonale dell’apparato digerente. Apparato urinario. Anatomia descrittiva e funzionale di: Reni, Pelvi, Ureteri, Vescica, Uretra maschile e femminile. Apparato genitale. MASCHILE - Anatomia descrittiva e funzionale di Testicoli, Prostata e Pene. FEMMINILE - Anatomia descrittiva e funzionale di Ovaia, Utero, Vagina. Sistema nervoso. SISTEMA NERVOSO CENTRALE – Anatomia descrittiva e funzionale di Midollo Spinale, Tronco encefalico,Cervelletto, Diencefalo, Telencefalo e Nuclei della Base. SISTEMA NERVOSO PERIFERICO - Correlazioni funzionali del sistema simpatico e parasimpatico, nomenclatura e significato dei Nervi Cranici. ORGANI DI SENSO - Occhio ed Orecchio.
Close course details
Show parent course details
Print
CourseHuman Anatomy
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCREMONA Ottavio
TeachersCREMONA Ottavio
Course typeGruppi
Year1
PartitionGruppo C
Close course details
Show parent course details
Print
CourseHistology Developmental biology
Course IDMS0083
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
TeachersPRAT Maria Giovanna, FOLLENZI Antonia
CFU6
Teaching duration (hours)48
Individual study time 102
SSDBIO/17 - Histology
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryA - Base
Year1
PeriodSecondo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Sites and/or partitions
Gruppo A
Gruppo B
Gruppo C
Close course details
Show parent course details
Print
CourseHistology Developmental biology
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderPRAT Maria Giovanna
TeachersPRAT Maria Giovanna
Course typeGruppi
Year1
PartitionGruppo A
Teaching languageItalian
AbstractStudy of the tissues of the body, in their morphological aspects, which are strictly connected with their localizations and functions. Study of the first periods of the development of the human being, of the mechanisms of their origin in the embryo and the interaction of the tissues to form organs. Stem cells from the beginning in the embryo to the adult. Animal models used to study developmental biology.
Reference textsWheater: Istologia e Anatomia microscopica, CEA Stevens-Lowe: Istologia Umana, CEA Alberts et al.,: Biologia molecolare della cellula. V ed. Zanichelli De Felici et al., Embriologia Umana. Piccin
Teaching targetsAt the end of the course the student must have acquired the basic knowledge -on the different tissues of the body, in relation to their localizations and functions. -on the development and morphogenesis of tissues, organs and systems in normal conditions. Moreover the student must know some animal models used to study developmental biology from which general principles for development have been deduced.
PrerequisitesThe student must have the basic knowledge of Cell Biology.
Didattics MethodsDirect lessons in classroom with the use of files in Presentation format and videos.
Grading rulesThe exam consists of a multichoice written proof (about 50 multichoice questions with 5 proposed answers, of which only one is correct; for among 10-12 of these questions slides will be projected and recognition of the cells or the tissue will be asked). Registration is mandatory. Only correct answers are considered for the final vote.
Full argumentsEpithelial tissue. Structure, classification. Cell polarity. Cytoplasmic and surface specialization in view of epithelial functions. Exocrine glands: structure and classification. Specializations of the secretory function. Mechanisms of regulated secretion. Endocrine glands. Structure. Hormones and receptors. Hypothalamo-hypophysial axis. Examples of endocrine glands. The blood: plasma, serum, cells. Structure, life and functions of the cells. Leukocyte count, hematocrit. Hemopoiesis. Hemocatheresis. Lymphoid tissues. Structure and organization of the lymphoid system. Lymphocyte classification and functions. Plasmacells and antibodies. Connective tissue: general structure and functions. Extracellular matrix and cells. Classification of connective tissues. Cartilage and bone. Structure, classification. Chondrogenesis, bone formation, growth, remodelling and repair. Adipose tissue. Muscle tissues: skeletal muscle, cardiac tissue, smooth muscle. Structure and membrane specialization. Mechanism and control of the muscle contraction. Blood vessels: structure. Capillaries and sinusoids. Vasculogenesis and angiogenesis. Nerve tissue. Composition. Ultrastructural specialization of the neuron, axonal transport, electric properties of the membrane; synapsis and neurotransmitters. Glia and myelin. Grey and white matter. Ganglions and nerves. Tissue homeostasis: tissue maintenance and renewal; stem cells and differentiation. Embryology Gametogenesis. Principles of anatomy and histology of the female and male reproductive systems. Somatic cells, germ cells and their maturation. Gametogenesis and their hormonal controls. Ovarian and menstrual cycles. Meiosis. Fertilization. Embryo development: zygote, segmentation, blastocyst. Blastocyst implantation. Bilaminar and trilaminar embryo. Folding of the embryo. Perspective development of the three embryonal layers. Fetal annexes. Concept of potentiality. Determination and differentiation. Position value. Body plan formation. Segmentation and homeotic genes. Principles of organogenesis, examples of the development of an organ (e.g. gonads, kidney). Which can be different depending on the year. Animal models used in the study of developmental biology: Drosophila melanogaster (body plan, homeotic genes); Caernorhabditis elegans (heterochronic and apoptotic genes); chicken and mouse (models for the study of human development)
Close course details
Show parent course details
Print
CourseHistology Developmental biology
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderPRAT Maria Giovanna
TeachersPRAT Maria Giovanna
Course typeGruppi
Year1
PartitionGruppo B
Teaching languageItalian
AbstractStudy of the tissues of the body, in their morphological aspects, which are strictly connected with their localizations and functions. Study of the first periods of the development of the human being, of the mechanisms of their origin in the embryo and the interaction of the tissues to form organs. Stem cells from the beginning in the embryo to the adult. Animal models used to study developmental biology.
Reference textsWheater: Istologia e Anatomia microscopica, CEA Stevens-Lowe: Istologia Umana, CEA Alberts et al.,: Biologia molecolare della cellula. V ed. Zanichelli De Felici et al., Embriologia Umana. Piccin
Teaching targetsAt the end of the course the student must have acquired the basic knowledge -on the different tissues of the body, in relation to their localizations and functions. -on the development and morphogenesis of tissues, organs and systems in normal conditions. Moreover the student must know some animal models used to study developmental biology from which general principles for development have been deduced.
PrerequisitesThe student must have the basic knowledge of Cell Biology.
Didattics MethodsDirect lessons in classroom with the use of files in Presentation format and videos.
Grading rulesThe exam consists of a multichoise written proof (about 50 multichoise questions with 5 proposed answers, of which only one is correct; for among 10-12 of these questions slides will be projected and recognition of the cells or the tissue will be asked). Registration is mandatory. Only correct answers are considered for the final vote.
Full argumentsEpithelial tissue. Structure, classification. Cell polarity. Cytoplasmic and surface specialization in view of epithelial functions. Exocrine glands: structure and classification. Specializations of the secretory function. Mechanisms of regulated secretion. Endocrine glands. Structure. Hormones and receptors. Hypothalamo-hypophysial axis. Examples of endocrine glands. The blood: plasma, serum, cells. Structure, life and functions of the cells. Leukocyte count, hematocrit. Hemopoiesis. Hemocatheresis. Lymphoid tissues. Structure and organization of the lymphoid system. Lymphocyte classification and functions. Plasmacells and antibodies. Connective tissue: general structure and functions. Extracellular matrix and cells. Classification of connective tissues. Cartilage and bone. Structure, classification. Chondrogenesis, bone formation, growth, remodelling and repair. Adipose tissue. Muscle tissues: skeletal muscle, cardiac tissue, smooth muscle. Structure and membrane specialization. Mechanism and control of the muscle contraction. Blood vessels: structure. Capillaries and sinusoids. Vasculogenesis and angiogenesis. Nerve tissue. Composition. Ultrastructural specialization of the neuron, axonal transport, electric properties of the membrane; synapsis and neurotransmitters. Glia and myelin. Grey and white matter. Ganglions and nerves. Tissue homeostasis: tissue maintenance and renewal; stem cells and differentiation. Embryology Gametogenesis. Principles of anatomy and histology of the female and male reproductive systems. Somatic cells, germ cells and their maturation. Gametogenesis and their hormonal controls. Ovarian and menstrual cycles. Meiosis. Fertilization. Embryo development: zygote, segmentation, blastocyst. Blastocyst implantation. Bilaminar and trilaminar embryo. Folding of the embryo. Perspective development of the three embryonal layers. Fetal annexes. Concept of potentiality. Determination and differentiation. Position value. Body plan formation. Segmentation and homeotic genes. Principles of organogenesis, examples of the development of an organ (e.g. gonads, kidney). Which can be different depending on the year. Animal models used in the study of developmental biology: Drosophila melanogaster (body plan, homeotic genes); Caernorhabditis elegans (heterochronic and apoptotic genes); chicken and mouse (models for the study of human development).
Close course details
Show parent course details
Print
CourseHistology Developmental biology
Academic Year2016/2017
Year of rule2016/2017
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderFOLLENZI Antonia
TeachersFOLLENZI Antonia
Course typeGruppi
Year1
PartitionGruppo C
Teaching languageItalian
AbstractStudy of the tissues of the body, in their morphological aspects, which are strictly connected with their localizations and functions. Study of the first periods of the development of the human being, of the mechanisms of their origin in the embryo and the interaction of the tissues to form organs. Stem cells from the beginning in the embryo to the adult. Animal models used to study developmental biology
Reference textsWheater: Istologia e Anatomia microscopica, CEA Stevens-Lowe: Istologia Umana, CEA Alberts et al.,: Biologia molecolare della cellula. V ed. Zanichelli De Felici et al., Embriologia Umana. Piccin
Teaching targetsAt the end of the course the student must have acquired the basic knowledge -on the different tissues of the body, in relation to their localizations and functions. -on the development and morphogenesis of tissues, organs and systems in normal conditions. Moreover the student must know some animal models used to study developmental biology from which general principles for development have been deduced.
PrerequisitesThe student must have the basic knowledge of Cell Biology.
Didattics MethodsDirect lessons in classroom with the use of files in Presentation format and videos.
Grading rulesThe exam consists of a multichoise written proof (about 50 multichoise questions with 5 proposed answers, of which only one is correct; for among 10-12 of these questions slides will be projected and recognition of the cells or the tissue will be asked). Registration is mandatory. Only correct answers are considered for the final vote.
Full argumentsEpithelial tissue. Structure, classification. Cell polarity. Cytoplasmic and surface specialization in view of epithelial functions. Exocrine glands: structure and classification. Specializations of the secretory function. Mechanisms of regulated secretion. Endocrine glands. Structure. Hormones and receptors. Hypothalamo-hypophysial axis. Examples of endocrine glands. The blood: plasma, serum, cells. Structure, life and functions of the cells. Leukocyte count, hematocrit. Hemopoiesis. Hemocatheresis. Lymphoid tissues. Structure and organization of the lymphoid system. Lymphocyte classification and functions. Plasmacells and antibodies. Connective tissue: general structure and functions. Extracellular matrix and cells. Classification of connective tissues. Cartilage and bone. Structure, classification. Chondrogenesis, bone formation, growth, remodelling and repair. Adipose tissue. Muscle tissues: skeletal muscle, cardiac tissue, smooth muscle. Structure and membrane specialization. Mechanism and control of the muscle contraction. Blood vessels: structure. Capillaries and sinusoids. Vasculogenesis and angiogenesis. Nerve tissue. Composition. Ultrastructural specialization of the neuron, axonal transport, electric properties of the membrane; synapsis and neurotransmitters. Glia and myelin. Grey and white matter. Ganglions and nerves. Tissue homeostasis: tissue maintenance and renewal; stem cells and differentiation. Embryology Gametogenesis. Principles of anatomy and histology of the female and male reproductive systems. Somatic cells, germ cells and their maturation. Gametogenesis and their hormonal controls. Ovarian and menstrual cycles. Meiosis. Fertilization. Embryo development: zygote, segmentation, blastocyst. Blastocyst implantation. Bilaminar and trilaminar embryo. Folding of the embryo. Perspective development of the three embryonal layers. Fetal annexes. Concept of potentiality. Determination and differentiation. Position value. Body plan formation. Segmentation and homeotic genes. Principles of organogenesis, examples of the development of an organ (e.g. gonads, kidney). Which can be different depending on the year. Animal models used in the study of developmental biology: Drosophila melanogaster (body plan, homeotic genes); Caernorhabditis elegans (heterochronic and apoptotic genes); chicken and mouse (models for the study of human development).
Close course details
Print
CourseFunctional biochemistry with elements of laboratory
Course IDBT068
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCAPELLO Daniela
TeachersCAPELLO Daniela, BALDANZI Gianluca
CFU11
Course typeAttività formativa integrata
Course mandatorietyMandatory course
Year2
PeriodPrimo Semestre
Grading typeFinal grade
Modules
Course ID Course SSD Teachers
BT038 Functional biochemistry BIO/10 - Biochemistry CAPELLO Daniela
MS0444 Laboratory of Biochemical Methods and proteomic BIO/10 - Biochemistry BALDANZI Gianluca
Close course details
Show parent course details
Print
CourseFunctional biochemistry
Course IDBT038
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCAPELLO Daniela
TeachersCAPELLO Daniela
CFU6
Teaching duration (hours)48
Individual study time 102
SSDBIO/10 - Biochemistry
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year2
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageItaliano
Reference textsPrincipi di biochimica di Lehninger di Lehninger - Nelson - Cox • 2014; VI edizione, Zanichelli Biochimica medica strutturale metabolica e funzionale di Noris Siliprandi, Guido Tettamanti. IV edizione, PICCIN
Teaching targets- Conoscere e spiegare a livello molecolare, subcellulare, cellulare e tissutale i meccanismi biochimici coinvolti nei processi di: digestione, assorbimento, trasporto, deposito, catabolismo, interconversioni, escrezione, biosintesi di: carboidrati, amminoacidi e proteine, lipidi, nucleotidi, gruppo eme, anche in relazione a diversi stati funzionali dell’organismo - Trasferire allo studente solide conoscenze dei meccanismi di regolazione ormonale dei principali processi biochimici associati alle diverse funzioni biologiche.
Didattics MethodsProiezione di diapositive durante le lezioni. Per la preparazione dell'esame gli studenti potranno utilizzare il materiale fornito dal docente (copia pdf delle diapositive proiettate a lezione ed eventuali dispense che approfondiscono gli argomenti trattati durante il corso) ed i libri di testo consigliati
Grading rules- L’esame è suddiviso in una parte scritta ed una parte orale. - La prova scritta verterà in 50 domande con risposte a scelta multipla (crocette) e/o risposte vero/falso. - Per superare la prova scritta occorre rispondere correttamente ad almeno 25 domande - Coloro che avranno superato la prova scritta con una votazione uguale o superiore a 25 potranno scegliere di sostenere la prova orale allo scopo di migliorare la propria valutazione
Close course details
Show parent course details
Print
CourseLaboratory of Biochemical Methods and proteomic
Course IDMS0444
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderBALDANZI Gianluca
TeachersBALDANZI Gianluca
CFU5
Teaching duration (hours)20
Individual study time 80
SSDBIO/10 - Biochemistry
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryA - Base
Year2
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageItalian
AbstractMeasuring biological things. Techniques for sample preparation in biochemistry Spectrophotometry. Chromatography Protein characterization. Using antibodies in biotechnology. Enzymes in diagnostic and research. Binding assays.
Reference textsPRINCIPI DI METODOLOGIA BIOCHIMICA di C. De Marco, C. Cini – Ed. Piccin METODOLOGIE DI BASE PER LE SCIENZE BIOMOLECOLARI di REED Rob , HOLMES David , WEYERS Jonathan , JONES Allan - 2002 Zanichelli Editore METODOLOGIE DI BASE PER LA BIOCHIMICA E LA BIOTECNOLOGIA di NINFA Alexander J , BALLOU David P - 2000 Zanichelli Editore
Teaching targetsLearning basic methodologies in the biochemistry laboratory.
PrerequisitesBasis of physics, chemistry, chemistry laboratory and biochemistry.
Didattics MethodsIn class theory lessons and laboratory exercitations.
Grading rulesThe frequency of laboratory exercitations is mandatory. By the end of the exercitations, the student will present a laboratory book that will be evaluated together with student’s productivity in the laboratory. The integrated course has a single written + oral exam.
Full argumentsMeasuring biological things. Techniques for sample preparation in biochemistry Spectrophotometry. Chromatography Protein characterization. Using antibodies in biotechnology. Enzymes in diagnostic and research. Binding assays.
Close course details
Print
CourseFundamentals of immunology and medical microbiology
Course IDBT027
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderAZZIMONTI Barbara
TeachersDIANZANI Umberto, AZZIMONTI Barbara
CFU10
Course typeAttività formativa integrata
Course mandatorietyMandatory course
Year2
PeriodSecondo Semestre
Grading typeFinal grade
Modules
Course ID Course SSD Teachers
BT029 Immunology MED/04 - Experimental medicine and pathophysiology DIANZANI Umberto
BT030 Medical microbiology MED/07 - Microbiology and clinical microbiology AZZIMONTI Barbara
Close course details
Show parent course details
Print
CourseImmunology
Course IDBT029
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderDIANZANI Umberto
TeachersDIANZANI Umberto
CFU5
Teaching duration (hours)40
Individual study time 85
SSDMED/04 - Experimental medicine and pathophysiology
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year2
PeriodSecondo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageItalian
Abstract-Cells and organs of the immune system. -Antigens-Antibodies. -Complement. -Monoclonal antibodies and laboratory technique. -TCR and MHC. -Antigen presenting cells. -B and T cell maturation. -Cytokines. -Functions of T and NK cells. -Immunological memory. -Immunoelusion. -Passive and active immunization. -Hypersensibility. -Autoimmune diseases.
Reference textsKubi, Immunologia, Utet Murphy, Immunobiologia di Janeway
Teaching targetsTo acquire knowledges on the immune system function at the level of innate and adaptive immunity in order to understand also the mechanisms of immune evasion, vaccination, and the etiology and pathogenesis of allergic and autoimmune diseases.
PrerequisitesKnowledge of basic cell biology and genetic
Didattics MethodsFrontal teaching with slides and written synopsis of the course
Other informationsnone
Grading rulesoral examination
Full arguments-Immune system. Innate and adaptive immunity. -Cells of the immune system. Receptors and mediators of innate immunity. -Organs of the immune system. -Antigens-Antibodies. Structure and function of the antibodies and antibody isotypes. Features of B cell antigens. Aptens. BCR structure and signaling. -Complement. Classic, alternative, lectinic pathway. Receptors and inhibitors. -Monoclonal antibodies and laboratory techniques. Monoclonal and polyclonal antibodies. Immunofluorescence, Western blot, RIA, ELISA, immunodiffusion. -TCR and MHC. Structure and function. The HLA system. Antigen presentation (endocytic, cytosolic, lipid pathways, cross-presentation). CD3, CD4, CD8, function and signaling. -Antigen presenting cells. Cell types, function second signal. CD28, CTLA-4 and PD-1. -B cell repertoire. Ig gene rearrangement. Antigen-independent and antigen-dependent maturation of B cells. -T cell repertoire. Thymic maturation of conventional and regulatory T cells. -Cytokines. Structure, function, receptors and signaling. -Helper and cytotoxic activities aof T cells. Th1, Th2, Th17, natural and induced Treg, CTL, NK, NKT, Tγδ. -Immune evasion. Mechanisms of immune evasion of infectious agents and tumors. -Passive and active immunization. Vaccines. -Type I, II, III, IV hypersensivity. Etiology, pathogenesis, examples. -Autoimmune diseases. Etiology, pathogenesis, examples.
Close course details
Show parent course details
Print
CourseMedical microbiology
Course IDBT030
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderAZZIMONTI Barbara
TeachersAZZIMONTI Barbara
CFU5
Teaching duration (hours)32
Individual study time 81
SSDMED/07 - Microbiology and clinical microbiology
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year2
PeriodSecondo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageitaliano
Reference textsTesti consigliati: - Principi di Microbiologia medica. Casa Editrice Ambrosiana. Antonelli, Clementi. - Microbiologia medica. Piccin. Javetz, Malnick, Adelberg’s. - Principi di Microbiogia medica. Società Editrice Esculapio. La Placa. - Microbiologia medica. EMSI. Murray, Rosenthal, Pfaller.
Teaching targetsAmpliare le conoscenze di base sulle specie microbiche implicate nelle principali malattie infettive, con approfondimento dei meccanismi patogenetici, diagnostici e terapeutici.
PrerequisitesNozioni di Microbiologia di base
Didattics MethodsPresentazioni in formato MS-Power Point e audio/video
Grading rulesProva scritta con domande a risposta aperta seguita da prova orale. In caso di classi superiori a 50 studenti è prevista una prova scritta con domande a risposta multipla e affermazioni che lo studente deve motivare.
Full argumentsLa cellula batterica: organizzazione e struttura. Divisione e crescita. Il metabolismo batterico. Flora microbica residente: il microbiota. Principi di virulenza batterica: Le tossine batteriche: esotossine ed endotossine; la spora; la capsula; i pili ed i flagelli; gli enzimi; i siderofori; il biofilm batterico. Meccanismi di trasferimento genico: coniugazione, trasformazione, trasduzione, trasposizione. Nozioni di base sui principali batteri patogeni: Stafilococchi, Streptococchi, Enterobatteriaceae, Clostridi, Micobatteri, Neisserie, Pseudomonas, A. Baumannii, Pneumococchi, Clamidie ed Elicobatteri. I virus: organizzazione e struttura, coltivazione e moltiplicazione, patogenicità. Nozioni di base sui principali virus patogeni: Hepadnavirus ed altri virus causa di epatiti, Herpesvirus, Papillomavirus, Orthomyxovirus, Retrovirus. Nozioni di base sugli agenti subvirali: i prioni. Nozioni di base sui microrganismi eucarioti: i protisti. Controllo della crescita microbica: Disinfezione e sterilizzazione; gli antibiotici; antimicrobici naturali; i farmaci antivirali; meccanismi di resistenza (i superbatteri). I vaccini: anti-polio, -meningite, -difterite, -tetanica, -pertosse, -rosolia, -HPV, -epatite, -influenzale, -morbillo, -varicella. La risposta immune contro le infezioni. Aspecifica: infiammazione, fagociti, fagocitosi e killing, complemento; Specifica: umorale e cellulo-mediata. Evasione della risposta immune da parte dei microrganismi. ANALISI DIRETTA INFEZIONI BATTERICHE Tecniche di diagnosi di laboratorio: Isolamento colturale (terreni selettivi/differenziali/SD, piastratura, colorazioni di GRAM, ZIEHL-NEELSEN e KYNIOUN) Analisi microscopica (campo chiaro, scuro, a contrasto di fase e fluorescenza) Identificazione Valutazione della sensibilità agli antibiotici: Antibiogramma Saggi di vitalità: XTT, MTT, Live/dead assay e calcolo delle CFU Test biochimici: catalasi, ossidasi, enzimatici in genere Tecniche di identificazione del biofilm Tecniche di trasferimento genico (trasformazione batterica) INFEZIONI VIRALI Isolamento colturale (cellule eucarioti sensibili e permissive) Analisi microscopica (ottica ed elettronica) Identificazione Titolazione dei virus Plaque assay ANALISI DIRETTA RAPIDA INFEZIONI BATTERICHE E VIRALI Test molecolari Ricerca e quantificazione di sequenze geniche: PCR; variazioni sul tema; ibridazione con sonde specifiche. Ricerca genoma Ibridazione in situ fluorescente: FISH Ricerca di antigeni: Agglutinazione, Emoagglutinazione, Rigonfiamento capsulare, Immunofluorescenza (IF), ELISA, WB ANALISI INDIRETTA Reazione di fissazione del complemento Reazione di agglutinazione Test immunoenzimatco (ELISA) Saggio in immunofluorescenza (IF) Esercitazioni Piastratura su MSA, Mac Conkey, Agar sangue e identificazione batterica Calcolo CFU Antibiogramma Test di vitalità batterica (Alamar blue, MTT) Colorazione di Gram Colorazione di Ziehl Neelsen a freddo
Close course details
Print
CourseGenetics
Course IDMS0443
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderGIORDANO Mara
TeachersGIORDANO Mara
CFU6
Teaching duration (hours)50
Individual study time 98
SSDMED/03 - Medical genetics
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year2
PeriodSecondo Semestre
Frequenza obbligatoriaYes
Grading typeFinal grade
Teaching languageItalian
Abstract-Structure and evolution of the human genome.- Cell division: mitosis and meiosis.-Correlation genotype-phenotype (example: ABO blood group, sickle-cell anemia).-Principles of Mendelian genetics.- Exceptions to the laws of Mendel.- Chromosomal classification criteria and chromosomal aberrations- Population genetics.-Transmission of independent and concatenated characters. Linkage analysis.- Quantitative and semi-quantitative multifactorial traits.- Methods of molecular genetics- Analysis of genomic databases
Reference textsEredità, Principi e problematiche della genetica umana, M.R. Cummings, Edizioni EdiSES, II edizione (2009) Genetica, Peter J. Russel, Edizioni EdiSES, II edizione
Teaching targetsTo understand the relationships between genetic information and the phenotype. To Know how to evaluate the risk of recurrence of genetic diseases or with genetic components in families. To know the molecular basis of genetically based diseases. Apply knowledge to the analysis and resolution of problems of formal and molecular genetics.To apply the basic methods of molecular genetics such as PCR and sequencing through practical laboratory activities
PrerequisitesFundamentals of biochemistry, cell biology and statistics.
Didattics MethodsLectures with presentations in MS-Power Point format.Assignment of problems od genetics to be solved in class with relative discussionPractical laboratory on PCR and DNA sequencing
Grading rulesThe knowledge will be verified by written exam with open and / or multiple choice questions.For most questions, the answer will require the solving of problems
Full arguments-DNA structure. Organization of DNA in chromosomes. Structure and function of the chromosome.-The Human Genome structure. Organization of genes. Transposable elements. Ripetitive DNA sequences. Gene families.-Cell division: mitosis and meiosis.-Genotype-phenotype correlation (example: ABO blood group, sickle cell anemia). Protein translation and genetic code. Correlation between type of mutations and dominant or recessive phenotype at different levels of phenotype investigation. Genetic consequences of meiosis.-Principles of Mendelian genetics. Transmission in families of autosomal recessive, dominant and X-linked monofactorial traits; recurrence risks in families.-"Exceptions" to Mendel’s rules. Incomplete penetrance, variable expressivity, genetic heterogeneity. X-chromosome inactivation, mitochondrial inheritance, genomic imprinting-Criteria for classification of chromosomes and methods for their identification. Chromosomal aberrations and their incidence at birth; Reproductive risks associated with chromosomal aberrations.-Population genetics. Gene and genotypic frequencies in the population and Hardy-Weinberg equilibrium.-Evolution of human populations. Evolutionary forces (mutation, selection, genetic drift, migration) that influence allelic and genotype frequencies.-Transmission of independent and concatenated characters. Localization of genes on chromosomes based on their transmission in families (linkage analysis). Different methods for gene mapping.-Multi-factorial characters. Population distribution of multifactorial characters; evaluation of the weight of the genetic component in multifactorial disorders; identification of susceptibility genes in multifactorial diseases.-DNA investigation methods. Polymerase Chain Reaction (PCR); Analysis of VNTR, STR and fingerprint polymorphisms; DNA sequencing; Methods for the identification of nucleotide variations.Genomic analysis through next generation sequencing methods and chromosomal microarray (MCA).-Analysis of Genomic Databases
Close course details
Print
CourseHuman physiology
Course IDBT035
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderGROSSINI Elena
TeachersGROSSINI Elena
CFU5
Teaching duration (hours)40
Individual study time 85
SSDBIO/09 - Physiology
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year2
PeriodSecondo Semestre
Frequenza obbligatoriaYes
Grading typeFinal grade
Teaching languageItalian
AbstractThe main focus of the course of Physiology is to achieve the knowledge of principles at basis of functional activity of various organs.The cardiovascular, respiratory, renal, digestive and endocrine systems will be treated. As regarding the nervous system, its role in the regularion of above systems will be treated.
Reference textsFisiologia Umana by F. Grassi, D. Negrini e CA Porro, Poletto Editore
Teaching targetsThe educational objectives are addressed to the knowledge of principles governing the functional acvitity of various organs and apparatus and to match them with main cellular mechanisms.
PrerequisitesStudents should be in possession of basic knowledge of Anatomy, Istology, Chemistry and Biochemistry.
Didattics MethodsMS-Power point slides
Grading rulesWritten test (true/false) on the entire programme
Full argumentsCardiovascular system: properties of the myocardium, cardiac cycle, cardiac output, arterial blood pressure, electrocardiogram, hemodinamic principles, coronary circulation and mentions to other vascular districts control. Respiratory system:respiratory mechanic; dead space, alveolar ventilation, alveolar gas exchange, chemical and nervous respiratory control, blood gas transport, high altitude acclimatation. Renal system:glomerular filtration, re-absorbtion and secretion mechanisms, renal clearances, urine concentration and dilution mechanisms, kidney and acide-base balance. Digestive system: composition, production and role of digestive secretes, gastrointestinal motility, intestinal absorbption, liver function. Endocrine system: physiologic functions of hormones released by hypothalamus, pituitary gland, thyroid, parathyroid glands, surrenal glands, endocrine pancreas and gonades. nervous system: the neurons
Close course details
Print
CourseLaboratory cell cultures
Course IDBT031
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderMERLIN Simone
TeachersBOLDORINI Renzo Luciano, MERLIN Simone
CFU6
Course typeAttività formativa integrata
Course mandatorietyMandatory course
Year2
PeriodPrimo Semestre
Grading typeFinal grade
Modules
Course ID Course SSD Teachers
MS0230 Histopathological preparations MED/08 - Pathology BOLDORINI Renzo Luciano
MS0445 Laboratory cell cultures BIO/17 - Histology MERLIN Simone
Close course details
Show parent course details
Print
CourseHistopathological preparations
Course IDMS0230
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderBOLDORINI Renzo Luciano
TeachersBOLDORINI Renzo Luciano
CFU1
Teaching duration (hours)8
Individual study time 28
SSDMED/08 - Pathology
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryC - Affine o integrativo
Year2
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageItalian
AbstractSpecifiche modalità di trattamento dei materiali biologici, cito ed istologici, significato dell’esame intraoperatorio. Principi e tecniche di estrazione degli acidi nucleici, metodiche di amplificazione genica, tecniche e principi di analisi di sequenza genica. Principi di colorazioni istochimiche ed immuno-istochimiche e loro utilizzo in ambito diagnostico.
Reference textsGallo P. - Anatomia Patologica per lauree triennali UTET
Teaching targetsConoscere i principi e le principali metodologie tecniche nella diagnostica autoptica, istologica e citologica in Anatomia Patologica. Comprendere le specifiche tecniche del trattameto degli acidi nucleici nella peculiarità di un laboratorio di Anatomia Patologica.
PrerequisitesConoscenze di base di chimica, anatomia ed istologia
Didattics MethodsPresentazioni in formato power-point, CD-ROM interattivi e siti internet didattici.
Grading rulesTest scritto a domande aperte o quiz a risposta multipla.
Full argumentsPrincipi di diagnostica macro e microscopica, modalità di preparazione tecnica dei materiali citologici ed istologici; procedure tecniche e finalità delle colorazioni istologiche, istochimiche, immunoistochimiche e della diagnostica ultrastrutturale. Metodiche di conservazione degli acidi nucleici a fini diagnostici.
Close course details
Show parent course details
Print
CourseLaboratory cell cultures
Course IDMS0445
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderMERLIN Simone
TeachersMERLIN Simone
CFU5
Teaching duration (hours)10
Individual study time 69
SSDBIO/17 - Histology
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year2
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageItalian
Reference textsPowerpoint presentation used during classes
Teaching targetsLearning basic cell culture techniques
PrerequisitesKnowledge of basic calculation methods used in chemical / biological laboratories
Didattics MethodsFrontal classes and practice in the cell colture lab
Grading rulesBrief summary with analysis of data obtained in lab and written exam
Full argumentsFrontal lessons on structure and organization of cell culture laboratories, biological risk, sterilization / disinfection methods; Practical lessons in the laboratory with cells growing in adhesion and suspension, freezing and thawing of cells, cell counts, and setting up a growth curve.
Close course details
Print
CourseMolecular Biology
Course IDBT022
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderSANTORO Claudio Ventura
TeachersPELICCI Giuliana, SANTORO Claudio Ventura
CFU11
Course typeAttività formativa integrata
Course mandatorietyMandatory course
Year2
PeriodPrimo Semestre
Grading typeFinal grade
Teaching languageITALIAN
AbstractTHOSE PROVIDED BY EACH MODULE
Reference textsSEE THOSE SUGGESTED BY EACH MODULE
Teaching targetsTHOSE PROVIDED BY EACH MODULE
PrerequisitesAS ABOVE
Didattics MethodsAS ABOVE
Other informationsNONE
Grading rulesA SINGLE EXAM WITH MODALITIES INDICATED IN EACH MODULE
Full argumentsAS REPORTED BY EACH MODULE
Modules
Course ID Course SSD Teachers
BT071 Biochemistry and molecular biology BIO/11 - Molecular biology PELICCI Giuliana
BT023 Recombinant technology lab BIO/13 - Experimental biology SANTORO Claudio Ventura
Close course details
Show parent course details
Print
CourseBiochemistry and molecular biology
Course IDBT071
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderPELICCI Giuliana
TeachersPELICCI Giuliana
CFU6
Teaching duration (hours)48
Individual study time 102
SSDBIO/11 - Molecular biology
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year2
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageItaliano
AbstractIntroduzione alla biologia molecolare: la nascita della Biologia Molecolare, dalla scoperta del DNA alla dimostrazione del suo ruolo come materiale genetico. Struttura chimica e fisica del DNA. Le basi genomiche della complessità: il ruolo del controllo dell’espressione genica, cenni di genomica comparata. Geni omologhi, paraloghi, ortologhi. Famiglie geniche (globine, tubulina); gene ancestrale e duplicazione genica.
Reference textsAlberts et al. “Biologia Molecolare dell Cellula” V ed. Zanichelli Lodish et al. “Biologia molecolare della cellula”, IV ed. Zanichelli Lewin “Il gene X”, ed. Zanichelli B. Lewin et al.: Il Gene 2°ed compatta (Zanichelli, 2011) Amaldi et al. “Biologia Molecolare”, seconda edizione (Ambrosiana) Michael M Cox Biologia Molecolare (Zanichelli)
Teaching targetsFornire le conoscenze di base della biologia molecolare principalmente negli organismi eucarioti , con particolare riferimento al settore bio-medico, le loro prospettive di ricerca e la comprensione dei principali processi cellulari.
PrerequisitesLo studente deve conoscere i meccanismi molecolari e cellulari che regolano la replicazione, la crescita cellulare e il programma di espressione genica in organismi eucarioti con alcuni parallelismi negli organismi procarioti.
Didattics MethodsLaboratorio didattico di biologia molecolare
Grading rulesProva scritta a domande a risposta multipla e aperte.
Full argumentsLe basi genomiche della complessità: il ruolo del controllo dell’espressione genica, cenni di genomica comparata. Geni omologhi, paraloghi, ortologhi. Famiglie geniche (globine, tubulina); gene ancestrale e duplicazione genica. Basi molecolari dell’epigenetica: struttura e regolazione della cromatina - struttura dei nucleosomi e organizzazione della cromatina - Gli istoni e le loro modificazioni (acetilazione, metilazione). - Meccanismi del rimodellamento istonico e delle modificazioni della cromatina e loro ruolo nella regolazione dell’espressione genica. Bromodomini e cromodomini. Ruolo e esempi di enzimi modificatori istonici: istone acetil transferasi (HAT), istone deacetilasi. Complessi di rimodellamento istonico. - Ruolo e meccanismi degli elementi isolatori. - Metilazione del DNA: significato biologico, DNA metil-transfrasi, meccanismi mediante cui la metilazione del DNA regola l’espressione genica. Regolazione della trascrizione - cenni sulle differenze tra la trascrizione dei procarioti e degli eucarioti - Trascrizione e regolazione negli eucarioti: RNA polimerasi II, struttura del promotore, fattori basali di Pol II e formazione del complesso di inizio. Ruolo del Mediatore. - Meccanismi di riconoscimento dei siti di avvio della trascrizione: TATA box e formazione dei complessi di avvio della trascrizione. - Ruolo delle sequenze regolatrici della trascrizione e i fattori che regolano la trascrizione (fattori di trascrizione e loro organizzazione modulare e dimerica). - Ruolo delle interazioni fra i fattori di trascrizione e i complessi di rimodellamento della cromatina e di modificazione degli istoni nella regolazione della trascrizione. Esempi. - Meccanismi di repressione della trascrizione. - Diverse strategie di regolazione della funzione degli attivatori della trascrizione. Esempi (NF-kB) - Le principali quattro classi strutturali dei fattori di trascrizione: elica-ansa-elica (omeogeni), elica-giro- elica (Myc/MAx/Mad), Cerniera di leucine (Jun. Fos, AP1), dita di zinco (recettori ormoni steroidei). Per ciascuna classe: elementi strutturali e meccanismi di interazione con il DNA, regolazione della funzione, cenni sulla funzione e sui geni regolati. La maturazione dell’RNA e il controllo post-trascrizionale - Significato di del capping e della poliadenilazione dei trascritti. Cenni sui meccanismi di capping, poliadenilazione e terminazione del mRNA. - Generalità sulla natura discontinua dei geni e significato dello splicing. - Lo spliceosoma e i meccanismi molecolari dello splicing. Lo splicing alternativo - Regolazione del riconoscimento dei siti di splicing: le sequenze ESE/ISE e ESS/ISS. Le proteine SR (contenenti i domini RRS) e le proteine hRNPs nella regolazione dello splicing. - Esempi di patologie causate da mutazioni che deregolano lo splicing. - Meccanismi di editing del mRNA. - Cenni sulla regolazione del trasporto e della localizzazione deglimRNA. - Regolazione della stabilità degli RNA (Esempio delle seq. IRE nella regolazione della stabilità e traduzione degli mRNA per il recettore della Transferrina e della Ferritina). - I micro-RNA: struttura genica, trascrizione e maturazione, ruolo delle proteine Dicer e del complesso RISC, diversi meccanismi di regolazione dell’espressione genica (trascrizione, stabilità mRNA e traduzione). Natura combinatoriale delle interazioni fra micro-RNA e geni target. Esempi. - Impatto della scoperta dei microRNA nello studio della funzione dei geni, nei tumori e prospettive cliniche. - Short-interferingRNAs; utilizzo nella ricerca di base e nella clinica. Sistemi di Riparazione del DNA - danni al DNA (mutazioni del DNA) e riparazione per escissione delle basi, riparazione per escissione di nucleotidi, riparazione di errori replicativi, riparazione di rotture su entrambi i filamenti. Replicazione del DNA - meccanismo di replicazione negli eucarioti; Telomeri e problema della replicazione nei telomeri; meccanismo che controlla la replicazione nel ciclo cellulare; Regolazione del Ciclo Cellulare - Principi generali del controllo del ciclo cellulare. - Ruolo dei complessi ciclina/Cdk nella progressione del ciclo cellulare. - Meccanismi molecolari della regolazione delle Cdk: interazione con cicline, fosforilazioni attivatorie e inibitorie, interazione con proteine inibitrici (p21, p16, p27 ecc.). Meccanismi di regolazione delle cicline: trascrizione, ubiquitinazione/degradazione. - Ruolo dei diversi complessi ciclina/cdk nella progressione delle diverse fasi del ciclo e concetto del “checkpoint”. - Regolazione dei complessi ciclina/Cdk in fase G1 e S: ruolo dell’attivazione di Jun/Fos e Myc e dei principali geni target di Myc; regolazione di E2F1 da Ciclina D/Cdk4, Rb e ciclinaE/Cdk2; regolazione del ciclo cellulare dai soppressori tumorali della famiglia p21, p16, p27 ecc. e loro regolazione da p53. Risposta cellulare allo stress - La risposta al danno al DNA e i complessi sensori, trasduttori eeffettori: ruolo di Atm, ChK1/2, Cdc25 e p53 nella cascata di trasduzione del segnale attivata dal danno al DNA. - p53: struttura, regolazione (da Mdm2, da Arf e da fosforilazione via Atm/Chk)e funzione nella risposta al danno al DNA, nella senescenza cellulare e nella risposta all’ipossia. Ruolo e meccanismi mediante cui p53 promuove arresto del ciclo cellulare e apoptosi. Significato delle mutazione di p53 nei tumori. - Trasformazione cellulare, concetti generali di oncogenesi. Oncogeni e proto-oncogeni, definizione e funzione. Meccanismi di attivazione degli oncogeni (gain of function). Alcuni esempi di oncogeni (recettori tirosino-chinasici, tirosine chinasi citoplasmatiche,src,bcr-abl,RAS). Soppressori tumorali (loss of function); perdita di eterozigosita'. Definizione di caretaker and gatekeeper. Rb; inibitori del ciclo cellulare; p53. Apoptosi - Significato generale dell’apoptosi nell’omeostasi cellulare. - Via estrinseca dell’attivazione dell’apoptosi: recettori pro-apoptotici, il death domain (DD) e il death effector domain (DED) e la trasduzione del segnale apoptotico fino all’attivazione delle caspasi regolatorie (caspasi 8). - Meccanismo di attivazione delle caspasi effettorie (caspasi 3) e ruolo dei loro substrati nel determinare l’apoptosi (cambiamento di forma, frammentazione del DNA, esternalizzazione della fosfofatidilserina) e il riconoscimento da cellule con attività fagocitica. - Via intrinseca dell’attivazione dell’apoptosi: ruolo centrale della regolazione della permeabilità della membrana mitocondriale esterna nel determinare il rilascio di citocromo C, Smac/Diablo e altre proteine che regolano l’apoptosi. Meccanismo di attivazione delle caspasi 9 da parte del citocromo c. Ruolo delle proteine IAP (inibitori di caspasi) nella regolazione dell’apoptosi. - I diversi meccanismi di regolazione delle 3principali famiglie di caspasi (caspasi 8, 9 e 3) - Formazione del poro della membrana mitocondriale esterna: le proteine Bcl2 pro-apoptotiche, le proteine Bcl2 anti-apoptotiche e le proteine BH3-only. Significato funzionale dei domini BH1, BH2e BH3. - Necrosi: caratteristiche distintive dall’apoptosi Manipolazioni genetiche nel topo - Transgenesi standard, gene targeting, sistemi Cre-Lox(sistemi costitutivi e inducibili). Esempi di topi transgenici o knock-outgenerati per lo studio di patologie (malattia di Alzheimer, topo p53-/-)
Close course details
Show parent course details
Print
CourseRecombinant technology lab
Course IDBT023
Academic Year2016/2017
Year of rule2015/2016
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderSANTORO Claudio Ventura
TeachersSANTORO Claudio Ventura
CFU5
Teaching duration (hours)16
Individual study time 73
SSDBIO/13 - Experimental biology
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year2
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageitalian
AbstractPrinciples and some practical aspects of basic recombinant technologies
Reference textsJeremy Dale, et al. Dai Geni ai Genomi ed EDISES III edition James D. Watson et al. DNA ricombinante Ed. Zanichelli II edition
Teaching targetsTo provide principles and operational practice of basic techniques used to express recombinant proteins.
Prerequisitesknowledge of the molecular mechanisms that control cell fate and function
Didattics Methodslecture and lab work
Other informationsavailable on DIR
Grading ruleswritten test with multiple choice or open questions
Full argumentsPCR. Vectors: for cloning and expression in bacteria or eukaryotic cells. Site directed mutagenesis. GMO and respective technologies. Genome editing. RNAi. Principle of proteomic analyses.
Close course details
Print
CourseBiotechnological applications in the clinical laboratory
Course IDMS0371
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderROLLA Roberta
TeachersDI RUSCIO Annalisa, ROLLA Roberta
CFU10
Course typeAttività formativa integrata
Course mandatorietyMandatory course
Year3
PeriodSecondo Semestre
SiteNOVARA
Grading typeFinal grade
Modules
Course ID Course SSD Teachers
BT011 Hematology MED/15 - Blood diseases DI RUSCIO Annalisa
BM047 Clinical pathology MED/05 - Clinical pathology ROLLA Roberta
Close course details
Show parent course details
Print
CourseHematology
Course IDBT011
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderDI RUSCIO Annalisa
TeachersDI RUSCIO Annalisa
CFU5
Teaching duration (hours)68
Individual study time 57
SSDMED/15 - Blood diseases
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year3
PeriodSecondo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageItaliano
Reference texts• R. Hoffman, E.J. Benz, Jr., S.J. Shattil, B. Furie, H.J. Cohen, L.E. Silberstein, P. McGlave (editords). HEMATOLOGY. BASIC PRINCIPLES AND PRACTICE. 6th edition. Churchill Livingstone, New York, 2012 Agli studenti verrà fornito al termine delle lezioni il set delle slides presentate a lezione
Teaching targetsSono obiettivi del modulo: 1. Conoscere ed interpretare la diagnostica morfologica delle malattie del sangue 2. Conoscere ed interpretare un esame emocromocitometrico 3. Conoscere ed interpretare i test diagnostici per le anemie ereditarie 5. Conoscere le applicazioni della citogenetica convenzionale e molecolare alla diagnostica e gestione delle malattie del sangue 6. Conoscere le applicazioni dei test molecolari alla diagnostica e gestione delle malattie del sangue 7. Conoscere le applicazioni dei test citofluorimetrici alla diagnostica e gestione delle malattie del sangue 8. Conoscere ed interpretare i test di medicina trasfusionale 9. Conoscere le applicazioni biotecnologiche al trapianto di cellule staminali emopoietiche 10. Conoscere le applicazioni alle malattie del sangue della genomica (gene expression profille, SNP array, GWAS, whole genome/exome sequencing)
PrerequisitesLo studente deve essere in possesso dei fondamenti della biologia cellulare, della immunologia, della citogenetica, della biologia molecolare, della istologia e citologia
Didattics MethodsAllestimento, colorazione e valutazione al microscopio ottico di uno striscio di sangue periferico Allestimento e valutazione di preparato mediante FISH Interpretazione di una sequenza Sanger per la identificazione di mutazioni Interpretazione di una PCR quantitativa per il trascritto di fusione BCR/ABL Presentazioni in formato MS-Power Point, siti internet didattici
Other informationsGli studenti hanno la possibilità di eseguire un internato presso il Laboratorio di Ematologia. Durante la frequenza presso il Laboratorio di Ematologia, lo studente sarà affiancato ad uno dei Biologi avviato ad alcune tecniche di diagnostica in Ematologia, con particolare riguardo alla diagnostica citomorfologica, alla diagnostica citogenetica ed alla diagnostica molecolare applicata alla oncoematologia.
Grading rulesLa verifica dell’apprendimento avverrà tramite prova scritta con quiz a scelta multipla.
Full arguments• Morfologia delle cellule del sangue 1. Tecnica dello striscio di sangue periferico 2. Colorazione May Grunwald/Giemsa 3. Morfologia filologica e patologica dell'eritrocita 4. Morfologia fisiologica e patologica del leucocita 5. Morfologia fisiologica e patologica delle piastrine 6. Morfologia fisiologica e patologica dei precursori emopoietici • Applicazioni citogenetiche alle malattie del sangue 1. Principi del cariotipo convenzionale 2. Principi del cariotipo molecolare FISH 3. Le principali anomalie citogenetiche associate alle malattie del sangue • La biologia molecolare delle malattie del sangue 1. Analisi del riarrangiamento delle immunoglobuline nella diagnostica delle malattie del sangue 2. Analisi del riarrangiamento del recettore T nella diagnostica delle malattie del sangue 3. Analisi mutazionale nella diagnostica delle malattie del sangue ereditarie ed acquisite 4. Ricerca dei trascritti di fusione nella diagnostica delle malattie del sangue 5. Analisi della malattia minima residua mediante approcci di biologia molecolare e RT-PCR 6. Analisi dell'attecchimento midollare dopo trapianto di cellule staminali emopoietiche allogeniche tramite Short Tandem Repeats • La diagnostica citofluorimetrica applicata alle malattie del sangue 1. Diagnostica citofluorimetrica delle leucemie 2. Analisi della malattia minima residua mediante citofluorimetria • Test di medicina trasfusionale 1. I gruppi ematici 2. I test di compatibilità • Trapianto di cellule staminali emopoietiche 1. Il sistema HLA 2. Raccolta e preparazione delle cellule staminali per il trapianto 3. Manipolazione del graft per il trapianto 4. Monitoraggio dell'attecchimento e della ricostituzione immunologica • Genomica delle malattie del sangue 1. Gene expression profile 2. Genomw wide association studies 3. SNP array 4. Whole genome and whole exome sequencing
Close course details
Show parent course details
Print
CourseClinical pathology
Course IDBM047
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderROLLA Roberta
TeachersROLLA Roberta
CFU5
Teaching duration (hours)32
Individual study time 81
SSDMED/05 - Clinical pathology
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year3
PeriodSecondo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageItalian
AbstractThe course describes the biotechnology used in Clinical Pathology.
Reference textsTeaching Material provided by the lecturer. Lecturer's Monographs.
Teaching targetsProvide a specific knowledge of biotechnology used in Clinical Pathology.
PrerequisitesGood knowledge of Chemistry, Biochemistry, Molecular Biology and Genetics.
Didattics MethodsPowePoint presentation. Teaching Network on DIR Website. Frontal lessons. Laboratory exercises.
Other informationsLaboratory exercises at Clinical Chemistry Unit, "Maggiore della Carità" Hospital of Novara, during which will be deepened the topics previously discussed in class, for a total of 12 hours/student.
Grading rulesMultiple choice test.
Full argumentsThe course is divided into two parts: a theoretical part and a practical part. *** The theoretical part consists of 28 hours of lectures, in which are described the topics listed below. A. Molecular Diagnostics in Clinical Pathology, in particular the following molecular biology techniques are described: • RealTime PCR (FRET probes) • Hybridization with ASO (Allele-Specific Oligonucleotide) • Microarray • Pyrosequencing • Mass spectrometry for nucleic acids analysis. Then are evaluated the molecular biology tests used in the diagnosis of the following diseases: • Cystic Fibrosis • Y chromosome microdeletion • Hereditary thrombophilia • Hemochromatosis In particular, the pathophysiological, biochemical and molecular bases of these pathologies are described. B. Description of Biotechnology used in Clinical Pathology for the study of hemostasis and coagulation. In particular: • biotechnologies used in the evaluation of coagulation: thrombotic risk and bleeding risk (screening tests and specialized tests). • biotechnologies used in the evaluation of platelet function (reticulated platelets, PFA, Multiplate, aggregometry). C. Description of Biotechnology used in Clinical Pathology for the study of blood diseases (red line and white line) and for the evaluation of body fluids (cerebrospinal fluid, ascites, pleural fluid, synovial fluid, cardiac liquid). In particular: • blood count • biochemical parameters for the evaluation of anemia • flow cytometry for leukaemias phenotyping • ion exchange chromatography for the evaluation of hemoglobinopathies and thalassemia. In particular are described the pathophysiological, biochemical and molecular bases of α and β thalassemia. D. Electrolyte, and Acid Base Balance E. Electrophoresis of human plasma proteins F. Biochemical markers of myocardial injury G. Renin-angiotensin-aldosterone system H. The clinical use of thyroid function tests I. Lipoprotein metabolism J. Pathophysiology of atherosclerosis *** Practical part - The theoretical part is interspersed with laboratory exercises in Clinical Chemistry Unit, "Maggiore della Carità" Hospital of Novara. During the laboratory exercises, topics previously discussed in class are deepened , for a total of 12 hours/student.
Close course details
Print
CourseClinical Biochemistry and Clinical Molecular Biology
Course IDMS0450
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCAPELLO Daniela
TeachersCAPELLO Daniela
CFU5
Teaching duration (hours)56
Individual study time 69
SSDBIO/12 - Clinical biochemistry and molecular biology
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryC - Affine o integrativo
Year3
PeriodSecondo Semestre
SiteNOVARA
Frequenza obbligatoriaYes
Grading typeFinal grade
Teaching languageItaliano
Abstract- Biomarcatori proteomici, metabolomici e genomici: definizione e ambito di utilizzo - Fattori dipendenti dalle fasi preanalitica, analitica e post-analitica che influenzano il risultato di laboratorio - Significato e limiti delle indagini di laboratorio: valutazione della qualità e del valore informativo del risultato di laboratorio. - Biomarcatori genomici e test molecolari: applicazioni cliniche della biologia molecolare - Le principali tecniche di biologia molecolare applicate alla diagnostica: principi chimico-fisici e ambiti di applicazione - Biomarcatori proteici: le proteine del plasma e biomarcatori enzimatici - Biochimica del metabolismo del ferro - Modificazioni metaboliche nelle cellule tumorali
Reference textsAntonozzi-Gulletta Medicina di Laboratorio Logica e Patologia Clinica, Piccin
Teaching targetsFornire allo studente un approfondimento sulle tecniche biochimiche e di biologia molecolare utillizzate in ambito diagnostico Trasferire allo studente le conoscenze di base sull'utilizzo di metodologie "genome wide" utilizzate nella ricerca traslazionale, con particolare attenzione all'ambito oncologico per l'identificazione di nuovi marcatori clinici
PrerequisitesLo studente deve essere in possesso delle indispensabili nozioni di biologia cellulare, biologia molecolare e biochimica di base
Didattics MethodsProiezione di diapositive durante le lezioni. Per la preparazione dell'esame gli studenti potranno utilizzare il materiale fornito dal docente (copia pdf delle diapositive proiettate a lezione e di alcuni articoli tratti da riviste scientifiche che approfondiscono gli argomenti trattati durante il corso) e sul libro di testo cconsigliato
Grading rulesL'esame consisterà in una prova scritta contenente 20 quesiti così suddivisi: - 12 domande con risposta a scelta multipla - 5 domande con scelta vero e falso e beve motivazione della scelta - 3 domande a risposta aperta
Full argumentsAA 2016-2017 Biochimica e Biologia Molecolare Clinica Parte 1_Introduzione. Definizione di biomarcatore. Biomarcatori proteomici, metabolomici e genomici Le fasi preanalitica, analitica e post-analitica delle indagini di laboratorio - Variabilità del materiale biologico, variabilità legata alle tecniche di prelievo ed alla conservazione del campione. Valutazione dei fenomeni fisici e chimici che possono modificare i valori degli analiti. - Significato e limiti delle indagini di laboratorio. Variabilità analitica. Errori di misura: errori sistematici, casuali o accidentali. Attendibilità, precisione, accuratezza e specificità, sensibilità analitica e limite di rilevabilità. - Definizione dei valori di riferimento e dei valori soglia. Sensibilità e specificità clinica. - Valore predittivo di un test diagnostico. Curve ROC Parte 2_Biologia Molecolare Clinica Biomarcatori genomici: applicazioni cliniche della biologia molecolare - Finalità e significato dei test molecolari: markers molecolari diagnostici, predittivi, prognostici, di efficacia, di evoluzione. - Classificazione e conseguenze funzionali delle alterazioni genetiche indagate in diagnostica molecolare - Applicazioni cliniche delle tecniche di biologia molecolare. Potenzialità e limiti dei test molecolari. La scelta del materiale biologico di partenza, in funzione del tipo di indagine e la finalità del test molecolare che si vuole effettuare. L’estrazione degli acidi nucleici da cellule nucleate di sangue periferico e midollare e da tessuti freschi o fissati. Metodi di purificazione e la quantificazione degli acidi nucleici. PCR qualitativa: principi ed esempi di applicazione per la determinazione di piccole delezioni, amplificazioni, duplicazioni, traslocazioni. La PCR quantitativa real-time: principi e meccanismi; quantificazione relativa e quantificazione assoluta. - Sequenziamento degli acidi nucleici: dal sequenziamento mediante tecnica Sanger al sequenziamento di II generazione (next generation sequencing/deep sequencing). Approccio “shotgun de novo sequencing” e “targeted resequencing”. Principi chimici e fisici dei metodi di sequenziamento Sanger, Roche 454, Illumina, Ion Torrent. Definizione di coverage, sensibilità, specificità dei diversi metodi e ambiti di applicabilità. III generation sequencing: principi chimico fisici del Sistema Helicos e della SMRT technology. IV generation sequencing: the nanopore technology for the single molecule sequencing. Principi chimico fisici del Sistema Genia e Nanopore technology I vantaggi del sequenziamento di mRNA per l’analisi del profilo di espressione genica rispetto ai metodi tradizionali di analisi di espressione - Identificazione delle variazioni strutturali del DNA. Dal cariotipo al microarray-comparative genomic hybridization” (CGH)/cariotipo molecolare, passando per la fluorescence in situ hybridization (FISH). Principi ed applicazioni in diagnostica oncologica e delle malattie congenite. CGH: analisi di gains, loss e loss of heterozygosity Parte 3_Biochimica Clinica degli organi e dei sistemi Biomarcatori proteici - Le proteine del plasma: classificazione funzionale, cause che ne determinano variazioni quantitative. Classificazione per mobilità elettroforetica. - Le proteine reattive della fase acuta: classificazione e cenni sulla loro regolazione. Le pentraxine (proteina C reattiva, proteina amiloid serica P), la proteina amiloide serica A. Struttura e funzione della transtiretina, transferrina, ceruloplasmina, 2 macroglobulina, -2 microglobulina, aptoglobina. Biomarcatori enzimatici - Criteri di scelta per i biomarcatori enzimatici nel laboratorio clinico. Metodi di determinazione delle attività enzimatiche. Fattori generali che condizionano i livelli dei diversi enzimi nel sangue in condizione di salute e di malattia. Fattori che influenzano l’utilità diagnostica di un enzima - Principali enzimi utilizzati nel laboratorio clinico: basi biochimiche della funzione in condizioni di normalità e razionale biologico per il loro utilizzo come marcatori di malattia. Definizione e valore diagnostico degli isoenzimi. Quadri enzimatici d’organo e condizioni morbose con aumenti o diminuzioni di transaminasi, creatina chinasi, lattico deidrogenasi, fosfatasi alcalina, gamma glutammil transferasi, amilasi, lipasi, tripsina, colinesterasi. Caratteristiche biochimiche e funzionali dei marcatori della patologia miocardica: mioglobina e troponine. Metabolismo del ferro - Ciclo del ferro e sua distribuzione nell’organismo. Principali enzimi che utilizzano il ferro: struttura e funzione. - L’omeostasi del Fe. Assorbimento del Fe con la dieta: meccanismo d’azione del DCYTB; la ferritina: struttura e funzione; la transferrina: struttura e modalità di trasporto del Fe. Sistema ferroportina/ephaestin/ceruloplasmina nel fegato e nei macrofagi. Meccanismo d’azione dell’epcidina; regolazione dell’espressione dell’epcidina da parte del Fe e dei mediatori dell’infiammazione - Controllo post-trascrizionale dell’omeostasi del Fe: il sistema IRP-IRE: proteine ed enzimi controllati attraverso questo meccanismo. IRP1 e attività aconitasica. Regolazione di IRP2. Ruolo dei fattori HIFs nell’omeostasi del Fe. Il sistema di regolazione dei fattori HIFs come sensori dei livelli di ossigeno e di Fe: le di ossigenasi -chetoglutarato dipendenti. - Disordini dell’omeostasi del Fe: le emocromatosi ereditarie causate da mutazioni nei geni HFE, HAMP, TRF2, SLC40A1, HJV. Modificazioni metaboliche nelle cellule tumorali - Meccanismi generali di regolazione della glicolisi in presenza o in carenza di ossigeno, l’effetto Pasteur, l’effetto Warburg nelle cellule tumorali. La fermentazione lattica ed il flusso del lattato tra tumore e microambiente. La via glicolitica per la sintesi de novo di intermedi metabolici per le vie anaboliche. La glutamminolisi e rifornimento alternativo del ciclo di Krebs. Il ciclo di Krebs per la sintesi de novo di intermedi metabolici per le vie anaboliche. - Geni e metabolismo: ruolo di MYC nella regolazione metabolica; il ruolo della via PI3K/AKT nel controllo metabolico: la regolazione di PFK2. Regolazione reciproca e coordinata di PFK1 e PFK2. PFK2 nei tumori. Le esochinasi nelle cellule tumorali, peculiarità di HK-II: meccanismo di azione e ruolo antiapoptotico. Le piruvato chinasi: ruolo di PKM2 nel metabolismo glicolitico e nella regolazione della trascrizione genica. Mutazioni dei geni IDH1, IDH2, FH e SDH nei tumori: ruolo diagnostico e significato funzionale. Ipotesi della deregolazione degli enzimi demetilasici nella patogenesi delle neoplasie con mutazioni nei geni IDH1 e IDH2
Close course details
Print
CourseDissertation Thesis
Course IDBT063
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
CFU10
Individual study time 250
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryE - Prova finale e lingua straniera
Year3
PeriodAnnuale
SiteNOVARA
Frequenza obbligatoriaYes
Grading typeFinal judgment
Close course details
Print
CourseElective Didactic Activities
Course IDMC117
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
CFU12
Individual study time 300
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryD - A scelta dallo studente
Year3
PeriodAnnuale
SiteNOVARA
Frequenza obbligatoriaYes
Grading typeFinal grade
Close course details
Print
CourseEpidemiology
Course IDMS0448
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderBARONE ADESI Francesco
TeachersBARONE ADESI Francesco
CFU5
Teaching duration (hours)40
Individual study time 85
SSDMED/42 - Hygiene and public health
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year3
PeriodPrimo Semestre
SiteNOVARA
Frequenza obbligatoriaYes
Grading typeFinal grade
Teaching languageItalian
AbstractFundamentals of Philosophy of Science applied to biomedical research;Epidemiological methods in biomedical research; the Syntesis of knowledge in biomedical research and its transfer into medical practice; the process of drug discovery and development; the communication of the results in biomedical research; Ethical Issues in biomedical research
Reference textsFaggiano, Donato, Barbone. Manuale di Epidemiologia per la sanità pubblica. Centro Scientifico Editore. Rothman. Epidemiology: An Introduction. Oxford press.
Teaching targetsKNOWLEDGE AND UNDERSTANDING To know the most basic concepts of philosophy of science applied to biomedical research To know the most important sources of epidemiological data. To understand the elements in the design and conduct of the most important types of epidemiological studies. To know the most important sources of bias in epidemiological studies. to understand the criteria for characterizing the causality of associations in Medicine. to know the key features of a systematic review of the scientific literature to know the key features of the process of drug discovery and development. to understand the key features of Evidence-Based Medicine. To know the basic features of the communication of results in biomedicalresearch To know the most important ethical aspects of biomedical research. APPLYING KNOWLEDGE AND UNDERSTANDING to be able to calculate measures of frequency and association to be able to interpret the results of an epidemiological study to be able to interpret the results of a meta-analysis
PrerequisitesNone
Didattics MethodsLectures
Other informationsNone
Grading ruleswritten exam
Full argumentsFundamentals of Philosophy of Science applied to biomedical research. The scientific method. The concepts of model, theory and hypothesis in science. Inductive and deductive reasoning. Epidemiological methods in biomedical research. The concept of Health and its evolution over time. Definition of Hygiene and Public Health. Introduction to medical statistics (sources of data; fonti; elaboration and presentation of epidemiological data; health indicators: incidence, mortality, prevalence, survival; measures of frequency and association). Main Epidemiological studies: clinical trials, cohort studies, case-control studies, cross-sectional studies, descriptive studies. Sources of uncertainty in epidemiology: the role of chance, bias and counfounding. Effect modification. Use of test of hypothesis and confidence intervals to interpret the results of an epidemiological study. The concept of statistical power applied to the interpretation of the results of an epidemiological study. Causal inferenc ein epidemiology. the Syntesis of knowledge in biomedical research and its transfer into medical practice. Systematic reviews, meta-analyses, guide-lines, Evidence-Based Medicine. The process of drug discovery and development. Epidemiological studies used in the different stages of the development of a drug. Introduction to pharmacoepidemiology and its applications to to the study of Adverse Drug Events. the communication of the results in biomedical research. Structure of a scientific report. The process of submission and reviewing of a scientific report. The scientific press. Ethical Issues in biomedical research. The conflict of interest. Disease mongering.
Close course details
Print
CourseFurther Learning Activities
Course IDMS0120
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
CFU2
Individual study time 100
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryF - Stage e altre attività formative
Year3
PeriodAnnuale
SiteNOVARA
Frequenza obbligatoriaYes
Grading typeFinal judgment
Close course details
Print
CourseGeneral Pathology
Course IDMS0447
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCARINI Rita
TeachersCARINI Rita
CFU6
Teaching duration (hours)48
Individual study time 102
SSDMED/04 - Experimental medicine and pathophysiology
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year3
PeriodPrimo Semestre
SiteNOVARA
Frequenza obbligatoriaYes
Grading typeFinal grade
Teaching languageItalian
Abstract1) INTRODUCTION TO GENERAL PATHOLOGY 2) THE GENETIC BASE OF THE DISEASES 3) PHYSICAL AGENTS AS CAUSE OF DISEASES 4) CHEMICAL AGENTS AS CAUSE OF DISEASES 5) BIOLOGICAL AGENTS AS CAUSE OF DISEASES 6) TISSUE MODIFICATIONS IN RESPONSE TO PATHOLOGICAL CHRONIC AND ACUTE STIMULA 7) INFLAMMATORY PROCESS 8) REPAIR PROCESS 9) NEOPLASTIC GROWTH 10) SYSTEMS of ENDOGENOUS RESISTANCE TO CELL DEATH
Reference textsPatologia e Fisiopatologia Generale di Pontieri, Russo, Frati (Ed. Piccin) Istituzioni di Patologia Generale. M.U. Dianzani (ed. UTET) La Professione del Medico vol.3, (ed UTET)
Teaching targetsThe specific aim of the PATOLOGIA GENERALE course is to understand the root causes (etiology) and mechanisms (pathogenesis) that are responsible for altering the state of health. To this end, the molecular, cellular and super-cellular effects of endogenous pathogens (genetic and tumor diseases) and exogenous pathogens (physical, chemical and biological causes of disease) will be examined. Cell and tissue levels will then be investigated for the adverse consequences of chronic and acute pacing with pathogens (degeneration, reversible and irreversible cell damage, cell death for necrosis or apoptosis). The local and systemic reaction to tissue damage will be described by thorough examination of the inflammatory process and consequent tissue repair. The course of GENERAL PATHOLOGY conducted for the Student of first Degree in BIOTECHNOLOGIES within the Extended Program reported below, will examine in particular the molecular mechanisms of the various pathological conditions examined with specific references to the implications for future Medical Research activities.
PrerequisitesThe Course needs the previous knowledge of fundamental elements of biochemistry, biology, genetics and physiology acquired in previous or parallel courses, which will provide the basis for the learning of the effects of exogenous and endogenous disease agents on the cellular and tissue levels ( Cell damage and neoplastic transformation) and non-specific (inflammatory) and specific (immune) defense responses.
Didattics MethodsLectures based on a continuous student interaction that will allow immediate verification of understanding of the topics discussed. Strongly recommended is the acquisition of notes of all the lessons directly taken by the student such notes will be essential for the preparation of the exam. All slides of the course will be available since from the first lesson.
Grading rulesThe student must demonstrate the learning of the fundamental mechanisms and causes of the diseases described in the course, as well as the knowledge of the fundamental aspects of the activation and development of the inflammatory process and the production of cellular damage. The exam consists of an oral examination.
Full argumentsINTRODUCTION TO GENERAL PATHOLOGY; The state of health, the concept of etiology, the concept of pathogenesis, the state of illness. GENETIC DISEASE BASES General on genetic mutations and their causes. Examples of genetic diseases: sickle cell anemia and alterations in transport or metabolism of amino acids: Hartnup disease, phenylalaninemia, albinism. PHYSICAL AGENTS AS A CAUSE OF DISEASE: generality about mechanical, thermal, electric power transfer pathologies. Effects of ionizing radiation (molecular, cellular and super-cellular) and the effects of exciting radiations. CHEMICAL AGENTS AS A DISEASE: absorption and elimination routes; biotransformation reactions: phase 1 (dependent on cytochrome P450) and phase 2; adverse effects of reactive metabolites produced during biotransformation), toxicity by chemical agents . The damage caused by free radicals: production mechanisms, protective factors and cell damage. BIOLOGICAL AGENTS AS A CAUSE OF DISEASE: Generalities on the mechanisms of damage and defense against viral and bacterial infections. TISSUE CHANGES IN RESPONSE TO CHRONIC AND ACUTE PATHOLOGICAL STIMULES: hypertrophy, hyperplasia, hypotrophy, atrophy, metaplasia; Reversible cell damage. Irreversible cell damage: cell death for necrosis and apoptosis. INFLAMMATORY PROCESS: Inflammatory cells and their functions (monocytes, macrophages, neutrophil granulocytes, basophils, mast cells, endothelial cells, platelets) soluble inflammatory mediators (histamine, serotonin, arachidonic acid metabolites, plasma proteases, cytokines: interleukin 1.6 [IL-1 and IL-6], tumor necrosis factor alpha [TNFalfa], transformant-beta growth factor [TGFbeta], bacterial metabolites). Alteration of the tone and vascular permeability during inflammation (exudate formation). Activity of phagocytic cells in inflammation (adhesion, diaphytesis, chemotaxis, phagocytosis, bacterial killing mechanisms); istoflogosi. Systemic effects of inflammation. REPAIR PROCESS: regeneration (tissue proliferative potential, growth factors: epidermal growth factor [EGF], transformant [TGFbeta], similar insulin [IGF], platelet derivation [PDGF], fibroblasts [FGF], interactions With matrix and other cells) substitution with connective tissue and angiogenesis. Wound repair NEOPLASTIC GROWTH: General characteristics of the neoplasms (information on incidence, mortality and survival, tumor classification and nomenclature); Hyperplasia, neoplasia, anaplasia and dysplasia. Viral and cellular oncogenes, oncosoppressor genes. Neoplastic phenotype: phenotypic heterogeneity and genomic instability. Initiation, promotion of the neoplastic process (carcinogenic stages or cancerogenesis as a continuous process). The progression of the neoplastic process (neoplastic latency, neoplastic invasion, metastases). SYSTEMS of ENDOGENOUS RESISTANCE TO CELL DEATH: Cytoprotective effects of cellular and tissue preconditioning. Early and delayed preconditioning. Mechanisms involved in preconditioning cytoprotection. Molecular mediators of preconditioning. Therapeutic implications.
Close course details
Print
CoursePharmaceutical Chemistry
Course IDMS0449
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderPIRALI Tracey
TeachersPIRALI Tracey
CFU5
Teaching duration (hours)40
Individual study time 85
SSDCHIM/08 - Pharmaceutical chemistry
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year3
PeriodSecondo Semestre
SiteNOVARA
Frequenza obbligatoriaYes
Grading typeFinal grade
Teaching languageitalian
AbstractMedicinal Chemistry definition. Pharmaceutical Phase Routes of administration. Pharmacokinetic Phase Absorption. Distribution. Elimination. Metabolism. Excretion. Pharmacodynamic Phase Intermolecular interactions. Role of steoreochemistry in the interaction with the binding site. Receptors as drug targets. Enzymes as drug targets. Miscellaneous drug targets. Hit compound and lead compound. Finding a lead. How to recognize drug-like molecules. Drug design The optimization of target interactions. The optimization of the access to the target. Drug development Preclinical and clinical trials. Examples of classes of drugs. Biotech drugs. Exercises.
Reference textsChimica Farmaceutica Graham L. Patrick Foye’s Principi di Chimica Farmaceutica Thomas L. Lemke, David A. Williams Medicinal Chemistry: The Modern Drug Discovery Process, E. Stevens Chimica Farmaceutica A. Gasco
Teaching targetsThe aim of the course is to introduce the student to the main principles of medicinal chemistry. The specific objectives of the course, according to the Dublino descriptors, are the following: 1. Knowledge and understanding. At the end of the course the student will know and understand the basic concepts of medicinal chemistry, in particular the route followed by the drug in the organism, from its administration to its excretion (pharmaceutical, pharmacokinetic, pharmacodynamic phases). Moreover, the itinerary of the drug in the pharmaceutical industry, from drug discovery to drug development through drug design, will be addressed. 2. The student will apply the acquired knowledge and understanding in the recognition of the chemical structures, in the discussion of the chemical and chemico-physical properties, of the mechanism of action, of the structure-activity relationship, of the metabolic fate and of the plausible routes for the synthesis of drugs. 3. The student will acquire the ability to identify and use data to formulate responses to well-defined concrete and abstract problems regarding the structure-activity relationship, the metabolism, the related toxicity, the synthesis, the drug-drug interaction for specific cases of drugs. Moreover, the student will be provided with all the tools necessary for the critical analysis of texts and papers in the medicinal chemistry literature. 4. The student will learn to communicate about his/her understanding, to describe, even in an original way, a topic described during lessons, to adequately answer to questions, critiques and suggestions. 5. The student will have the learning skills to handle in a dinamic way his/her knowledge in medicinal chemistry with some autonomy.
PrerequisitesIn order to give the exam in Medicinal Chemistry I it is necessary that the student has passed the exam in Organic Chemistry
Didattics MethodsThe course is given with the support of power point slides, which are furnished to the students at the beginning of the lessons. The last lessons consist in practice exercises with the aim of preparing the student to the exam.
Grading rulesThe exam consists in a computer-based written test displaying 15 questions. The exam aims at verifying both the knowledge on the contents of the course and the ability to apply this knowledge to specific cases of drugs used in therapy. The student has to demonstrate to be able to o identify the functional groups, the acid, basic and stereogenic centers, the plausible reactions of metabolism, the intermolecular interactions, etc. Through these tests, it will be verified that the student has achieved the objectives of knowledge and understanding of the contents of the course, the ability to communicate these concepts in a clear and correct manner and the competence to apply the acquired knowledge and skills to specific concerns regarding the medicinal chemistry of the different classes of drugs.
Full argumentsMedicinal Chemistry definition. Pharmaceutical Phase Routes of administration. Pharmacokinetic Phase Absorption. Mechanisms of absorption. Passive diffusion. Partition coefficient. Fick law. Henderson-Hasselbach equation. Ion-pair absorption. Carrier mediated transport. Vescicolar transport. Convective trasport. The absorption in the oral administration: first-pass metabolism. Distribution. Plasma protein binding. Accumulation. Blood-brain barrier. Placental barrier. Elimination. Renal excretion. Phase I and phase II metabolism. Soft e hard drugs. Pharmacokinetic concepts. Plasma concentration-time curve. Clearance. Half-life. Bioavailability. Apparent volume of distribution. Factors that influence pharmacokinetics. Pharmacodynamic Phase Intermolecular interactions. Covalent bond. Ionic bond. Dipole-dipole interaction. Ion-dipole interaction. Hydrogen bond. Halogen bond. Charge transfer. Van der Waals interactions. Hydrophobic interactions. Pi greco-pi greco interactions. Role of steoreochemistry in the interaction with the binding site. Three point contact model. Pfeiffer rule. Eutomer, distomer, eudismic ratio. Chiral switch. Methods for the chiral switch. Receptors as drug targets: theories, strategies to design agonists, antagonists, allosteric modulators, inverse agonists. Enzymes as drug targets: competitive reversible, non competitive reversible, irreversible inhibitors, transition-state analogues, suicide substrates. Miscellaneous drug targets: transport proteins as drug targets, structural proteins as drug targets, protein-protein interactions, lipids as drug targets. Hit compound and lead compound. Choosing a disease, a drug target, a bioassay. High-throughput screening, NMR screening, virtual screening. Parallel and combinatorial synthesis. Finding a lead: natural products, serendipity, natural ligand modifications, me-too drugs, SOSA approach, screening, de novo drug design, fragment-based drug design. How to recognize drug-like molecules. Lipinski and Veber rules. Drug design The optimization of target interactions: structure-activity relationships, isosteres and bioisosteres, classic and non classic bioisosteres, pharmacophore identification, drug design strategies (extension, chain extension/contraction, homology, vinilogy, benzology, ring expansion/contraction, ring variations, ring fusion, structure simplification, structure rigidification, conformational blockers, twin drugs and hybrids). The optimization of the access to the target: how to optimize the hydrophobic and hydrophilic properties, how to improve the chemical and the metabolic stability, prodrugs, mutue prodrugs. Drug development Preclinical and clinical trials. Examples of specific classes of drugs. Biotech drugs. Exercises.
Close course details
Print
CoursePharmacology and Innovation management
Course IDMS0432
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderFRESU Luigia Grazia
TeachersCONICELLA Fabrizio, FRESU Luigia Grazia, JOMMI Claudio
CFU12
Course typeAttività formativa integrata
Course mandatorietyMandatory course
Year3
PeriodPrimo Semestre
SiteNOVARA
Grading typeFinal grade
Modules
Course ID Course SSD Teachers
MS0422 Innovation management and technology transfer SECS-P/08 - Management CONICELLA Fabrizio
BM030 Pharmacology BIO/14 - Pharmacology FRESU Luigia Grazia
M0201 Managerial economics in life sciences SECS-P/07 - Business administration and Management JOMMI Claudio
Close course details
Show parent course details
Print
CourseInnovation management and technology transfer
Course IDMS0422
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderCONICELLA Fabrizio
TeachersCONICELLA Fabrizio
CFU2
Teaching duration (hours)16
Individual study time 68
SSDSECS-P/08 - Management
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryC - Affine o integrativo
Year3
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageItalian
AbstractArgomenti principali Creatività risultato scientifico e processo innovativo Project management Strumenti per l'informazione brevettuale Technology transfer Business model/business plans Marketing
Reference textsSlides e materiale condiviso Testi suggeriti: Innovation and Entrepreneurship John Bessant Joe Tidd June 2011 John Wiley & Sons Inc; ISBN-10: 0470711442 ISBN-13: 978-0470711446 Managing Innovation: Integrating Technological, Market and Organizational Change, Joe Tidd, John Bessant March 2009 ISBN-10: 0470998105 ISBN-13: 978-0470998106 http://www.innovation-portal.info La Gestione Del Trasferimento Tecnologico - Strategie, Modelli E Strumenti Andrea Piccaluga, Massimiliano Granieri, Giuseppe Conti 1 edizione (25 agosto 2011) ISBN-10: 884701901X ISBN-13: 978-8847019010 Ricerca e sviluppo nell'industria biotecnologica e farmaceutica Silvano Fumero Bollati Boringhieri (23 maggio 2003) ISBN-10: 8833957071 ISBN-13: 978-8833957074 Economia delle aziende biotecnologiche Franco Angeli; 1 edizione (11 agosto 2015), Collana: Università-Economia ISBN-10: 8891714054 ISBN-13: 978-8891714053 Business Planning Cinzia Parolini : Pearson Collana: Studio & professione Febbraio 2011 ISBN-10: 8871926293 ISBN-13: 978-8871926292 Commercializing Successful Biomedical Technologies: Basic Principles for the Development of Drugs, Diagnostics and Devices Shreefal S. Mehta Cambridge University Press; Reissue edizione (30 aprile 2011) ISBN-10: 0521205859 ISBN-13: 978-0521205856 Building Biotechnology: Biotechnology Business, Regulations, Patents, Law, Policy and Science Yali Friedman Editore: Logos Press; 4. Auflage. edizione (1 gennaio 2014) ISBN-10: 1934899291 Project Management: dall'idea all'attuazione. Una guida pratica per il successo Marion E. Haynes Editore: Franco Angeli (11 ottobre 2012) ISBN-10: 8856811650 ISBN-13: 978-8856811650 ISBN-13: 978-1934899298
Teaching targetsIl corso di Management dell'innovazione e trasferimento tecnologico ha come obiettivo quello di presentare, con focalizzazione sulle scienze della vita, le maggiori problematiche relative alla gestione dei progetti di ricerca e delle innovazioni conseguenti da questi, nonché dei percorsi di valorizzazione dei risultati, sia attraverso percorsi di trasferimento tecnologico che di avvio di imprese innovative. Una attenzione particolare sarà assegnata alla analisi degli aspetti industriali di tali percorsi ed alle problematiche brevettuali e di sfruttamento commerciale dei risultati della ricerca scientifica, incluse le problematiche di avvio d’impresa, nonché alle problematiche di project management e di gestione dell’innovazione
PrerequisitesMC004 Lingua Inglese
Didattics MethodsPresentazione powerpoint ed accesso internet per consultazione banche dati. Eventuale simulazione di definizione valutazione risultato scientifico in ottica di sfruttamento.
Other informationsObiettivo del corso è presentare i concetti chiave alla base della valorizzazione dei risultati della ricerca con un focus specifico sulle scienze della vita. Lo studente dovrà quindi acquisire una conoscenza delle problematiche di gestione dell’innovazione e dei processi di trasferimento tecnologico sufficiente a comprendere i processi alla base dei percorsi di valorizzazione dei risultati scientifici ed ad identificarne e, in prospettiva, gestirne gli elementi cardine. Lo studente dovrà inoltre acquisire le conoscenza di base per analizzare una innovazione in ottica imprenditoriale e per identificare ed approcciare le componenti chiave di un business plan. Lo studente dovrà infine acquisire la capacità di analizzare, interpretare e pianificare fenomeni di trasferimento tecnologico e avvio di nuove imprese e comprendere le dinamiche del settore industriale di riferimento.
Grading rulesTest a risposta multipla
Full argumentsLe tematiche affrontate saranno le seguenti: •    Creatività, risultato scientifico ed innovazione •    Dall’idea all’innovazione: la gestione dei progetti innovativi ed il project management •    Le fonti di informazione brevettuale •    La gestione e la valorizzazione dei risultati del processo innovativo: brevetti, nuove imprese e trasferimento tecnologico •    La promozione dell’innovazione: il marketing delle innovazioni •    Dal risultato scientifico all’impresa: le forme del trasferimento tecnologico Business models e business plans •    Le scienze della vita e le biotecnologie: panoramica sugli elementi della struttura industriale
Close course details
Show parent course details
Print
CoursePharmacology
Course IDBM030
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderFRESU Luigia Grazia
TeachersFRESU Luigia Grazia
CFU5
Teaching duration (hours)40
Individual study time 85
SSDBIO/14 - Pharmacology
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year3
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageitalian
AbstractBasic principles of pharmacocynetic and pharmacodynamic. Drugs of nervous system; drugs of cardiovascular system; anti-inflammatory drugs; immunosuppressive drugs; antineoplastic drugs; insulin and oral hypoglicemic drugs
Reference textsThe most recent publications cited during the lectures, the following books are recommended: 1. HP Rang and MM Dale – Farmacologia, Casa Ed Ambrosiana 2. Goodman & Gilman – Le basi farmacologiche della terapia di J.G.Hardman, L.E. Limbird, A.Goodman Gilman, Curatore edizione italiana: C.Sirtori, G.Folco, G.Franceschini, S.Govoni. 3. Farmacologia generale e molecolare, a cura di F.Clementi, G.Fumagalli, Ed UTET
Teaching targetsIn the context of this Integrated Course, the module of Pharmacology will give to students the basis of pharmacokinetic and pharmacodynamic principles, the general concepts of “conventional small molecules” and biological/biotechnological drugs along with the most important pharmacological differences and their pre-clinical and clinical development. Moreover, the course will provide detailed information about selected drug classes
PrerequisitesStudents are required to have a good preparation in biochemistry, physiology, anatomy and pathology
Didattics MethodsLectures with power point presentation
Grading rulesWritten test
Full arguments-Introduction to pharmacology - Discovery and development of a new drug: pre-clinical and clinical phases - The main principles of drugs, conventional small molecules, biological/biotechnological drugs, equivalent and biosimilar drugs -Pharmacodynamic: receptors and signal transduction; meaning of agonist and antagonist; the dose-response curve; -Pharmacokineti: absorbtion, distribution, metabolism and excretion of drugs; definition of half life, bioavailability, clearance and distribution volume -Antiinflammatory drugs -Immunosuppressive drugs -Anti-neoplastic drugs Anti-coagulant and anti-thrombotic drugs - Anti-hypertensive drugs - Drugs of nervous system: anti-depressives, anti-parkinson, anti-psycotic drugs - Drug abuse: opioids, psicostimulants, cannabinoids
Close course details
Show parent course details
Print
CourseManagerial economics in life sciences
Course IDM0201
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderJOMMI Claudio
TeachersJOMMI Claudio
CFU5
Teaching duration (hours)40
Individual study time 17
SSDSECS-P/07 - Business administration and Management
Course typeModulo di sola Frequenza
Course mandatorietyMandatory course
Course categoryB - Caratterizzante
Year3
PeriodPrimo Semestre
Frequenza obbligatoriaYes
Grading typeFinal judgment
Teaching languageItalian
AbstractIntroduction to management and biotech market Biotech industry Management of biotech inventions Economic evaluation of (red) biotechnologies
Reference textsThere is not a single textbook. Management of biotech inventions Friedman Y (2013), Building Biotechnology: Biotechnology Business, Regulations, Patents, Law, ThinkBiotech LLC, 4th Edition Bio-pharma industry Gianfrate F, Il mercato dei farmaci tra salute e business, Franco Angeli Editore, 2014 Economic evaluation of red biotechnologies Mennini FS, Cicchetti A, Fattore G, Russo P. La Valutazione Economica dei Programmi Sanitari. Il Pensiero Scientifico ed. 2011. Terza Edizione.
Teaching targetsThe course aims at providing the students with competences and tools to manage research projects, to start a new company, to work in the bio-pharma industry
PrerequisitesNone
Didattics MethodsLectures, Class discussions, Class and homework exercises, Groups Works
Other informationsStudents are expected to participate actively, including Groups Works
Grading rulesFinal written test (open questions (80% of final grade); discussion of Groups Works (20% of final grade)
Full argumentsIntroduction to management and (red) biotechnology market - Introduction to management and basics of economics - Introduction to the biotech industry and biotech drugs market - Drugs Research and Development - Drugs Market Regulation - Market access, marketing and sales Management of biotech inventions - Patents and Intellectual Property Rights (introductory aspects, procedures, patent databases, economic evaluation of patents) - Technology Transfer: from idea to market Economic evaluation of (red) biotechnologies - Cost-effectiveness analysis - Budget Impact analysis
Close course details
Print
CourseStatistical methods for experimental studies
Course IDMS0446
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
Teaching leaderMAGNANI Corrado
TeachersMAGNANI Corrado
CFU5
Teaching duration (hours)40
Individual study time 85
SSDMED/01 - Medical statistics
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryA - Base
Year3
PeriodPrimo Semestre
SiteNOVARA
Frequenza obbligatoriaYes
Grading typeFinal grade
Teaching languageItalian
AbstractFirst level course. Statisical methods for data description. Probability. Sampling. Principles of statistical inference. Tests of common use for the analysis of numerical and categorical data.
Reference textsAll the suggested texts are Italian translations of English textbooks. The students can choose the language as they prefer.M.Pagano & K.Gauvreau. Biostatistica (II edizione italiana). ed. Idelson Gnocchi, Napoli 2003.Further readings:Daniel G Biostatistica. Ed. Edises..Armitage & Berry Metodi statistici nella ricerca medica, 3a edizione (ed inglese Blackwell, tradotto e stampato in Italia da McGraw-Hill). The 4th edition is also available in English only.Siegel & Castellan Statistica non parametrica. McGraw-Hill. – Text on non parametric tests.Douglas Altman, David Machin, Trevor Bryant, Martin Gardner Statistics with Confidence (2nd ed.) BMJ edition.. www.publichealth.ac.nz/Reading of papers on statistical methosds, as those published on British Medical Journal or British Journal of Cancer.
Teaching targetsFirst year:Data description.Probability. Sampling. The student is expected to get the basis for describing data from laboratory activity and for understanding the basic steps of sampling and study design.Second year:Understanding of statistical inference.Basic use and interpretation of statistical tests for categorical and numerical data.
PrerequisitesMathematics as in high schools.
Didattics MethodsThe course covers the 2nd and the 3rd year, with final test at the 3rd year. The course will include lectures and exercises. For the latter the students will be divided in small groups.Some topics will be left for individual study.
Grading rulesWritten test (60 min approx.)The test includes:-open questions;- exercise solution;- check – list- summary questions on the interpretation of the result of the statistical test.The entire program will be considered in the final test, including the topics left for individual study.
Full argumentsFirst part (Second year)1) PresentationGeneral concepts Presentation of the data -       Types of data. -       Absolute, relative, cumulative frequencies. -       Tables of contingency. -       Graphical representations of frequency distributions. Chapters of reference: 1 & 2   2) Synthesis and presentation of numerical data Indices of position (mean, median, mode) and of dispersion (standard deviation, coefficient of variation, percentiles). Graphical representations of numerical data. Box plot Geometric mean, logarithmic transformation. Calculation of the average for grouped data. Description of data defined from two variables. -       Dot diagrams Chapters of reference: 2 & 3 3) Probability Definition of probability. Calculation of the probability of an event and the combined probability of more events. Conditional probabilities -       Application: sensibility, specificity and predictive value of a diagnostic test. Chapters of reference: 6   4)Methods sampling chapter 22   Second part (Third year) 5) Theoretical Distributions of probability Binomial distribution. Calculation of the probability of an event with binomial probability distribution. Normal distribution Standard Normal distribution. Use of the tables of the standard normal distribution. Chapters of reference: 7   5) Sampling and distribution of sample means Definition of population and sample. Reasons for sampling. Relation between population and sample and property of collections of samples. Theorem of the central limit. Applications of the theorem of the central limit. Sample size Chapters of reference: 8   6) The Student t distribution Definition Degrees of freedom. Applications Use of EXCEL statistical functions for the normal distribution and the t distribution. Chapters of reference: 9 Confidence intervals Definition Calculation of the confidence interval for the average, in the cases with known and unknown population variance. Generalization of the calculation of the confidence interval to other statistics. Chapters of reference: 9 7)Test of hypothesis Introduction to the inferential statistics Work Hypothesis and null hypothesis Error of I° and II° type Chapters of reference: 10 8) Comparison between two averages Use of the t-Student Test. Use of the tabulated t distribution and the functions of Excel. -       Sample with paired observations. -  Independent samples with equal variance. -       Confidence interval based on the t distribution. Chapters of reference: 11 9) Analysis of the data in contingency tables Tables of contingency with two lines and two columns (2x2). -       Chi-square test. -       Association: Odds Ratio and Relative Risk. -       Confidence interval of the Odds ratio -       Correction of the continuity -       Exact test of Fisher -       Test of McNemar Extension to tables n x m. Degrees of freedom. Chapters of reference: 15 10) Analysis of the variance - analysis of the variance with one classification criterion Chapters of reference: 11 11)  Simple linear regression The regression straight line. The esteem with the least-squares method. Statistical test of regression coefficients.Use of the residuals in order to verify the validity of the assumptions. Confidence intervals for prediction. Reading results of multivariable analysis Chapters of reference: 18 12)  Introduction to the design of the study Statistical power    Arguments of individual study on the reference text (without lectures) Tests “distribution free” or distribution free General introduction Advantages and disadvantage Comparison with the parametric correspondents tests. Test U di Mann-Whitney Test of Wilcoxon for joined data Chapters of reference: 13 Correlation: Pearson & Spearman (reference: 17)
Close course details
Print
CourseTraining
Course IDMS0146
Academic Year2016/2017
Year of rule2014/2015
Degree9415 - BIOTECNOLOGIE
CurriculumCORSO GENERICO
CFU8
Individual study time 200
Course typeAttività formativa monodisciplinare
Course mandatorietyMandatory course
Course categoryF - Stage e altre attività formative
Year3
PeriodAnnuale
SiteNOVARA
Frequenza obbligatoriaYes
Grading typeFinal judgment
Close course details
Data synched: 03/05/2019, 05:42